Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem
HTML articles powered by AMS MathViewer
- by William Cherry and Zhuan Ye PDF
- Trans. Amer. Math. Soc. 349 (1997), 5043-5071 Request permission
Abstract:
Cartanâs method is used to prove a several variable, non-Archimedean, Nevanlinna Second Main Theorem for hyperplanes in projective space. The corresponding defect relation is derived, but unlike in the complex case, we show that there can only be finitely many non-zero non-Archimedean defects. We then address the non-Archimedean Nevanlinna inverse problem, by showing that given a set of defects satisfying our conditions and a corresponding set of hyperplanes in projective space, there exists a non-Archimedean analytic function with the given defects at the specified hyperplanes, and with no other defects.References
- W. W. Adams and E. G. Straus, Non-archimedian analytic functions taking the same values at the same points, Illinois J. Math. 15 (1971), 418â424. MR 277771, DOI 10.1215/ijm/1256052610
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Yvette Amice, Les nombres $p$-adiques, Collection SUP: âLe MathĂ©maticienâ, vol. 14, Presses Universitaires de France, Paris, 1975 (French). PrĂ©face de Ch. Pisot. MR 0447195
- S. Bosch, U. GĂŒntzer, and R. Remmert, Non-Archimedean analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer-Verlag, Berlin, 1984. A systematic approach to rigid analytic geometry. MR 746961, DOI 10.1007/978-3-642-52229-1
- A. Boutabaa, Sur la théorie de Nevanlinna $p$-adique, Thése de Doctorat, Université Paris 7, 1991.
- Abdelbaki Boutabaa, ThĂ©orie de Nevanlinna $p$-adique, Manuscripta Math. 67 (1990), no. 3, 251â269 (French, with English summary). MR 1046988, DOI 10.1007/BF02568432
- A. Boutabaa, Sur les courbes holomorphes $p$-adiques, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), 29â52.
- James Carlson and Phillip Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. (2) 95 (1972), 557â584. MR 311935, DOI 10.2307/1970871
- H. Cartan, Sur les zéros des combinaisons linéaires de $p$ fonctions holomorphes données, Mathematica 7 (1933), 5-31.
- W. Cherry, Hyperbolic $p$-Adic Analytic Spaces, Ph.D. Thesis, Yale University, 1993.
- William Cherry, Non-Archimedean analytic curves in abelian varieties, Math. Ann. 300 (1994), no. 3, 393â404. MR 1304429, DOI 10.1007/BF01450493
- C. Corrales-Rodrigåñez, Nevanlinna Theory in the $p$-Adic Plane, Ph.D. Thesis, University of Michigan, 1986.
- Capi Corrales-Rodrigåñez, Nevanlinna theory on the $p$-adic plane, Ann. Polon. Math. 57 (1992), no. 2, 135â147. MR 1182179, DOI 10.4064/ap-57-2-135-147
- David Drasin, The inverse problem of the Nevanlinna theory, Acta Math. 138 (1976), no. 1-2, 83â151. MR 585644, DOI 10.1007/BF02392314
- Hirotaka Fujimoto, Nonintegrated defect relation for meromorphic maps of complete KĂ€hler manifolds into $P^{N_1}(\textbf {C})\times \cdots \times P^{N_k}(\textbf {C})$, Japan. J. Math. (N.S.) 11 (1985), no. 2, 233â264. MR 884636, DOI 10.4099/math1924.11.233
- Phillip Griffiths and James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145â220. MR 427690, DOI 10.1007/BF02392265
- HĂ Huy KhoĂĄi, On $p$-adic meromorphic functions, Duke Math. J. 50 (1983), no. 3, 695â711. MR 714825, DOI 10.1215/S0012-7094-83-05033-0
- Ha Huy Khoai, Heights for $p$-adic meromorphic functions and value distribution theory, TáșĄp chĂ ToĂĄn Há»c J. Math. 20 (1992), no. 1, 14â29. MR 1367446
- Khoai Ha Huy, La hauteur des fonctions holomorphes $p$-adiques de plusieurs variables, C. R. Acad. Sci. Paris SĂ©r. I Math. 312 (1991), no. 11, 751â754 (French, with English summary). MR 1108483
- H. Kneser, Zur Theorie der gebrochenen Funktionen mehrerer VerÀnderlicher, Jber. Deutsch. Math. Verein. 48 (1938/39), 1-28.
- HĂ Huy KhoĂĄi and My Vinh Quang, On $p$-adic Nevanlinna theory, Complex analysis, Joensuu 1987, Lecture Notes in Math., vol. 1351, Springer, Berlin, 1988, pp. 146â158. MR 982080, DOI 10.1007/BFb0081250
- Ha Huy Khoai and Mai Van Tu, $p$-adic Nevanlinna-Cartan theorem, Internat. J. Math. 6 (1995), no. 5, 719â731. MR 1351163, DOI 10.1142/S0129167X95000304
- Serge Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987. MR 886677, DOI 10.1007/978-1-4757-1945-1
- Serge Lang and William Cherry, Topics in Nevanlinna theory, Lecture Notes in Mathematics, vol. 1433, Springer-Verlag, Berlin, 1990. With an appendix by Zhuan Ye. MR 1069755, DOI 10.1007/BFb0093846
- W. LĂŒtkebohmert, Letter to R. Remmert, 1995.
- R. Nevanlinna, Le théorÚme de Picard-Borel et la théorie des fonctions méromorphes, Paris, 1929.
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
- Charles F. Osgood, A number theoretic-differential equations approach to generalizing Nevanlinna theory, Indian J. Math. 23 (1981), no. 1-3, 1â15. MR 722894
- Charles F. Osgood, Sometimes effective Thue-Siegel-Roth-Schmidt-Nevanlinna bounds, or better, J. Number Theory 21 (1985), no. 3, 347â389. MR 814011, DOI 10.1016/0022-314X(85)90061-7
- Wilhelm Stoll, The Ahlfors-Weyl theory of meromorphic maps on parabolic manifolds, Value distribution theory (Joensuu, 1981) Lecture Notes in Math., vol. 981, Springer, Berlin, 1983, pp. 101â219. MR 699135, DOI 10.1007/BFb0066385
- Al Vitter, The lemma of the logarithmic derivative in several complex variables, Duke Math. J. 44 (1977), no. 1, 89â104. MR 432924, DOI 10.1215/S0012-7094-77-04404-0
- Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451, DOI 10.1007/BFb0072989
- Pit-Mann Wong, On the second main theorem of Nevanlinna theory, Amer. J. Math. 111 (1989), no. 4, 549â583. MR 1011549, DOI 10.2307/2374813
- Pit-Mann Wong and Wilhelm Stoll, Second main theorem of Nevanlinna theory for nonequidimensional meromorphic maps, Amer. J. Math. 116 (1994), no. 5, 1031â1071. MR 1296724, DOI 10.2307/2374940
- Zhuan Ye, On Nevanlinnaâs error terms, Duke Math. J. 64 (1991), no. 2, 243â260. MR 1136375, DOI 10.1215/S0012-7094-91-06412-4
- Zhuan Ye, On Nevanlinnaâs second main theorem in projective space, Invent. Math. 122 (1995), no. 3, 475â507. MR 1359601, DOI 10.1007/BF01231453
Additional Information
- William Cherry
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- MR Author ID: 292846
- Email: wcherry@math.lsa.umich.edu
- Zhuan Ye
- Affiliation: Department of Mathematics, Northern Illinois University, DeKalb, Illinois 60115
- Email: ye@math.niu.edu
- Received by editor(s): October 14, 1995
- Received by editor(s) in revised form: June 17, 1996
- Additional Notes: Financial support for the first author was provided in part by NSF grant # DMS-9505041
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 349 (1997), 5043-5071
- MSC (1991): Primary 11J99, 11S80, 30D35, 32H30, 32P05
- DOI: https://doi.org/10.1090/S0002-9947-97-01874-6
- MathSciNet review: 1407485