## Hausdorff dimension, pro-$p$ groups, and Kac-Moody algebras

HTML articles powered by AMS MathViewer

- by Yiftach Barnea and Aner Shalev
- Trans. Amer. Math. Soc.
**349**(1997), 5073-5091 - DOI: https://doi.org/10.1090/S0002-9947-97-01918-1
- PDF | Request permission

## Abstract:

Every finitely generated profinite group can be given the structure of a metric space, and as such it has a well defined Hausdorff dimension function. In this paper we study Hausdorff dimension of closed subgroups of finitely generated pro-$p$ groups $G$. We prove that if $G$ is $p$-adic analytic and $H \le _c G$ is a closed subgroup, then the Hausdorff dimension of $H$ is $\dim H/\dim G$ (where the dimensions are of $H$ and $G$ as Lie groups). Letting the spectrum $\operatorname {Spec}(G)$ of $G$ denote the set of Hausdorff dimensions of closed subgroups of $G$, it follows that the spectrum of $p$-adic analytic groups is finite, and consists of rational numbers. We then consider some non-$p$-adic analytic groups $G$, and study their spectrum. In particular we investigate the maximal Hausdorff dimension of non-open subgroups of $G$, and show that it is equal to $1 - {1 \over {d+1}}$ in the case of $G = SL_d(F_p[[t]])$ (where $p > 2$), and to $1/2$ if $G$ is the so called Nottingham group (where $p >5$). We also determine the spectrum of $SL_2(F_p[[t]])$ ($p>2$) completely, showing that it is equal to $[0,2/3] \cup \{ 1 \}$. Some of the proofs rely on the description of maximal graded subalgebras of Kac-Moody algebras, recently obtained by the authors in joint work with E. I. Zelmanov.## References

- A. G. Abercrombie,
*Subgroups and subrings of profinite rings*, Math. Proc. Cambridge Philos. Soc.**116**(1994), no. 2, 209–222. MR**1281541**, DOI 10.1017/S0305004100072522 - N. Bourbaki,
*Lie groups and Lie algebras, Chapters 1-3*, Springer, Berlin, 1980. - Y. Barnea, A. Shalev and E.I. Zelmanov, Graded subalgebras of affine Kac-Moody algebras, to appear in
*Israel J. Math.* - R. Camina,
*Subgroups of the Nottingham Group*, Ph.D. Thesis, QMW, London, 1996. - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - P. Hebroni,
*Sur les inverses des éléments dérivables dans un anneau abstrait*, C. R. Acad. Sci. Paris**209**(1939), 285–287 (French). MR**14** - J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal,
*Analytic pro-$p$-groups*, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR**1152800** - Kenneth Falconer,
*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677** - James E. Humphreys,
*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR**0323842**, DOI 10.1007/978-1-4612-6398-2 - D. L. Johnson,
*The group of formal power series under substitution*, J. Austral. Math. Soc. Ser. A**45**(1988), no. 3, 296–302. MR**957195**, DOI 10.1017/S1446788700031001 - Michel Lazard,
*Groupes analytiques $p$-adiques*, Inst. Hautes Études Sci. Publ. Math.**26**(1965), 389–603 (French). MR**209286** - Alexander Lubotzky and Avinoam Mann,
*Powerful $p$-groups. I. Finite groups*, J. Algebra**105**(1987), no. 2, 484–505. MR**873681**, DOI 10.1016/0021-8693(87)90211-0 - Alexander Lubotzky and Aner Shalev,
*On some $\Lambda$-analytic pro-$p$ groups*, Israel J. Math.**85**(1994), no. 1-3, 307–337. MR**1264349**, DOI 10.1007/BF02758646 - Jean-Pierre Serre,
*Lie algebras and Lie groups*, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University. MR**1176100**, DOI 10.1007/978-3-540-70634-2 - Aner Shalev,
*Growth functions, $p$-adic analytic groups, and groups of finite coclass*, J. London Math. Soc. (2)**46**(1992), no. 1, 111–122. MR**1180887**, DOI 10.1112/jlms/s2-46.1.111 - Aner Shalev,
*Some problems and results in the theory of pro-$p$ groups*, Groups ’93 Galway/St. Andrews, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge, 1995, pp. 528–542. MR**1337295**, DOI 10.1017/CBO9780511629297.019 - I.O. York,
*The Group of Formal Power Series under Substitution*, Ph.D. Thesis, Nottingham, 1990. - E. I. Zel′manov,
*On periodic compact groups*, Israel J. Math.**77**(1992), no. 1-2, 83–95. MR**1194787**, DOI 10.1007/BF02808012

## Bibliographic Information

**Yiftach Barnea**- Affiliation: Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel
- Email: yiftach@math.huji.ac.il
**Aner Shalev**- Affiliation: Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel
- MR Author ID: 228986
- ORCID: 0000-0001-9428-2958
- Email: shalev@math.huji.ac.il
- Received by editor(s): June 4, 1996
- Additional Notes: Supported by the United States – Israel Bi-National Science Foundation, Grant No. 92-00034/3
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**349**(1997), 5073-5091 - MSC (1991): Primary 28A78, 22C05; Secondary 20F40, 17B67
- DOI: https://doi.org/10.1090/S0002-9947-97-01918-1
- MathSciNet review: 1422889