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GORENSTEIN ALGEBRAS, SYMMETRIC MATRICES,

SELF-LINKED IDEALS, AND SYMBOLIC POWERS

STEVEN KLEIMAN AND BERND ULRICH

To David Eisenbud on his fiftieth birthday

Abstract. Inspired by recent work in the theory of central projections onto
hypersurfaces, we characterize self-linked perfect ideals of grade 2 as those with
a Hilbert–Burch matrix that has a maximal symmetric subblock. We also prove
that every Gorenstein perfect algebra of grade 1 can be presented, as a module,
by a symmetric matrix. Both results are derived from the same elementary
lemma about symmetrizing a matrix that has, modulo a nonzerodivisor, a
symmetric syzygy matrix. In addition, we establish a correspondence, roughly
speaking, between Gorenstein perfect algebras of grade 1 that are birational
onto their image, on the one hand, and self-linked perfect ideals of grade 2 that
have one of the self-linking elements contained in the second symbolic power,
on the other hand. Finally, we provide another characterization of these ideals
in terms of their symbolic Rees algebras, and we prove a criterion for these
algebras to be normal.

1. Introduction

A traditional way of studying an algebraic variety is to project it from a general
center onto a hypersurface, and conversely a variety with given properties is often
constructed by modifying a suitable hypersurface. It is known that the variety is
Cohen–Macaulay if and only if, locally, its algebra can be presented, as a module
on the target projective space, by a square matrix. If so, then the determinant
cuts out the hypersurface, the submaximal minors generate the ‘adjoint’ ideal (the
ideal that induces the conductor), and the adjoint ideal is Cohen–Macaulay of
codimension 2; moreover, if the adjoint ideal is radical, then its second symbolic
power contains the determinant. Furthermore, the variety is Gorenstein if and only
if, via row operations, the matrix can be made symmetric. In this paper, we’ll
prove in essence that the variety is Gorenstein if and only if the adjoint ideal is
self-linked with the determinant as one of the self-linking elements; see Section 3.
In Section 2, we’ll characterize a self-linked Cohen–Macaulay ideal of codimension
2 as one with a Hilbert–Burch matrix having a maximal symmetric subblock. This
result was known before, but not in characteristic 2; moreover, our proof yields, at
the same time, the symmetrization result for Gorenstein varieties. In Section 3, we’ll
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also characterize, in terms of the symbolic Rees algebra, each such ideal that, in
addition, has one of the self-linking elements in its second symbolic power. Finally,
in Section 4, we’ll study what it means for the variety to be normal.

A milestone in this theory was reached by Catanese [6] on the basis of work by
and with a number of others. Catanese (see [6, Rmk. 5.1, p. 98]) set up a cor-
respondence between Gorenstein algebras with module generators and symmetric
matrices satisfying a rank condition, or row condition, (RC); here each algebra is bi-
rational onto its image, the generators form a finite minimal set starting with 1, and
RC means that the ideal of submaximal minors of the matrix is equal to the ideal
of maximal minors of the submatrix obtained by deleting the first row. Viewing
RC as the hypothesis of the Rouché–Capelli theorem (which asserts that an inho-
mogeneous system of linear equations has a solution if the rank of the coefficient
matrix is equal to that of its augmentation), Catanese [6, Rmk. 4.6, p. 91] showed
that RC is essentially equivalent to the existence of a commutative associative al-
gebra structure on the cokernel of the matrix. Catanese also considered algebras
of higher rank, especially of rank two, and represented them via symmetric ma-
trices; however, RC is no longer relevant. (In fact, Catanese considered weighted
homogeneous algebras, but the theory is essentially the same for our purposes.)
Reviewing Catanese’s paper, Reid [MR 86c:14027] called the correspondence “the
most interesting idea of this important paper.”

The correspondence was extended by Mond and Pellikaan [26] and by de Jong
and van Straten [7]. Mond and Pellikaan were especially interested in the locus
Ni, for i = 1, 2, 3, . . . , defined by the vanishing of the (i− 1)-st Fitting ideal of the
algebra. Their purpose was to show that these loci are suitable choices for the loci of
multiple points of the projection. For example, N1 is the image of the projection;
N2 is the locus where the projection is not an isomorphism, with the structure
defined by the adjoint ideal; and N3 is, in the Gorenstein case, a particularly well-
behaved locus of triple points. De Jong and van Straten were especially interested
in relating the deformation theory of the projection to the deformation theory of
the inclusion of N2 into N1. In particular, they often worked over a nonreduced
base ring containing the complex numbers.

Mond and Pellikaan and de Jong and van Straten extended the correspondence
to relate Cohen–Macaulay algebras with generators and square matrices with RC.
Furthermore, they added a third component, the Cohen–Macaulay ideals I of codi-
mension 2 with a preferred element ∆ satisfying a ring condition; this is the con-
dition that the reciprocal of I/(∆), viewed as a fractional ideal, is equal to the
endomorphism ring of I/(∆). The present authors, together with Lipman, devel-
oped the connection with enumerative multiple-point theory in [21] and [22]. In
the present paper, we will investigate the third component of the correspondence,
especially in the Gorenstein case in part using the symbolic Rees algebra, and we’ll
study the significance of normality. Along the way, we’ll extend some of the known
results, and simplify and clarify their proofs. In more detail, here’s what we’ll do.

We will work, for the most part, over an arbitrary Noetherian local ring R, which
plays the role of the localized polynomial ring. In this setting, the correspondence
relatesR-algebrasB with module generators, square matrices ϕ with RC, and ideals
I with a preferred element ∆ satisfying the ring condition. Moreover, we’ll replace
the condition that R be regular and B (resp., I) be Cohen–Macaulay with the more
general condition that B be perfect of grade 1 (resp., that I be perfect of grade
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2). Similarly, we’ll use the relative form of the Gorenstein condition, namely, that
Ext1R(B,R) be B-isomorphic to B.

In Section 2, we will prove the symmetrization results. First, Theorem 2.3 as-
serts that, if a Gorenstein R-algebra B is presented by a matrix ϕ with regular
determinant, then there exist invertible matrices ε and µ such that εϕ and ϕµ are
symmetric. Conversely, an R-algebra B is Gorenstein if it’s presented by a matrix
with regular determinant ∆ and if R/(∆) ⊂ B; see Proposition 2.12. Second, The-
orem 2.6 asserts that a necessary and sufficient condition for a perfect R-ideal I
of grade two to be self-linked is that, given any n by n− 1 matrix φ presenting I,
there exists an invertible matrix ε such that the submatrix consisting of the last
n − 1 rows of εφ is symmetric. Our proofs of Theorems 2.3 and 2.6 are substan-
tially easier, shorter, and more general than earlier proofs; our proofs are our main
contribution in Section 2.

Theorem 2.3 and the necessity in Theorem 2.6 are derived from Lemma 2.1,
which shifts the burden of proving the symmetry of a matrix to checking the con-
dition that the syzygy matrix of the matrix modulo a nonzerodivisor is symmetric,
which is a natural condition in the context of the two theorems. Lemma 2.1 en-
ters via Proposition 2.2, which adds another common ingredient, a bilinear form.
This line of reasoning was inspired by Catanese’s original argument [6, pp. 84–87].
Theorem 2.3 was proved independently and in essentially the same way by Grassi
[15], and he went on to treat perfect Gorenstein algebras of grade 2. Another proof
of Theorem 2.3 was given by Mond and Pellikaan [26, Prop. 2.5, p. 117], but their
proof uses Noether normalization, and breaks down when B is not finite over a
regular subring.

The sufficiency assertion of Theorem 2.6 is derived in a few lines from Part (3) of
Lemma 2.5, which asserts this: given a symmetric matrix whose ideal of submaximal
minors that do not involve the first column is of grade at least 2, the determinant
and the lower right minor together form a regular sequence with respect to which
the ideal is self-linked. This assertion also follows from a theorem of Valla’s [32,
Thm. 2.1, p. 97]; Valla’s proof uses the mapping cone, whereas ours uses matrix
factorization. The use of matrix factorization in this context was introduced by de
Jong and van Straten [7, p. 532], who used it to prove a version of Parts (1) and (2)
of Lemma 2.5; see also [26, pf. of 3.14, pp. 126–7]. Theorem 2.6 was first stated and
proved in full by Ferrand in an unpublished fifteen-page manuscript, but his proof
of necessity, unlike ours, requires that 2 be invertible in R. Valla [32, Remark, p.
99] posed the problem of finding an easier proof of necessity, and then gave one in
the case of three generators. Ours is such a proof, which works for arbitrarily many
generators and in arbitrary characteristic.

Proposition 2.9 gives, for a perfect R-algebra B of grade 1, an upper bound on
the height of its Fitting ideal Fi for i ≥ 2. In geometric terms, this is an upper
bound on the codimension of the multiple-point locus Ni+1 of a central projection.
Part (1) of the proposition asserts that the height of Fi is at most

(
i+1
2

)
if B is

Gorenstein. Part (2) asserts that the height of F2 is at most 4 if B is Cohen–
Macaulay and is of rank 2 over R/(∆), where ∆ is a nonzerodivisor, and if R is
regular. Part (1) for i = 2 was proved (implicitly) by Mond and Pellikaan [26,
Thm. 4.3, p. 131] when B is of rank 1 over its image (or birational onto it). In
particular, in the Gorenstein case, the codimension of N3 is at most 3, which is the
expected upper bound. However, this bound can fail in the Cohen–Macaulay case;
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see Example 2.10. It is unknown whether it is possible to have codN4 > 4 in the
Gorenstein case.

Both parts of Proposition 2.9 will be derived from Lemma 2.8, which asserts
that Fi has the same radical as a certain subideal, the subideal of n − i by n − i
minors of the matrix obtained by deleting the first row and column of a suitable
matrix presenting B. In Part (1) the matrix is symmetric, and in Part (2) it’s
alternating. In their case, Mond and Pellikaan [26, Prop. 4.1, p. 128] proved that
the two ideals coincide. We’ll recover this result, via their approach, as part of
Lemma 3.6. In Part (2) the matrix is given by Proposition 2.7(1), which deals
more generally with modules M of rank 2 over R/(∆); the matrix is obtained
directly from Proposition 2.2. Proposition 2.7(2) recovers a result of Herzog and
Kühl [17, Thm. 3.1(a), p. 82], which asserts that the minimal number of generators
ν(M) is even. They follow a different approach: they associate a Gorenstein ideal
of grade 3 to M via a Bourbaki sequence, and then use the Buchsbaum–Eisenbud
structure theorem, which says that these ideals are presented by an alternating
matrix. Proposition 2.7(3) gives an upper bound on the height of Fitti(M) for
i < ν(M)/2; the special case i = 1 is also a special case of a result of Bruns [3,
Cor. 2, p. 23].

In Section 3, we’ll establish the correspondence between the set of perfect R-
algebras B of grade 1 whose first and second Fitting ideals F1 and F2 satisfy
gradeF1 = 2 and gradeF2 ≥ 3 and the set of the perfect R-ideals I of grade 2
such that I is a complete intersection at each associated prime and whose second
symbolic power I(2) contains a preferred regular element ∆, determined up to a
unit multiple. The condition gradeF1 = 2 means simply that B lies in the total
quotient ring of R/(∆) and that B 6= R/(∆); see Proposition 2.12. The Gorenstein
B correspond to the I that are self-linked with ∆ as one of the self-linking elements.
Given B, we’ll take I to be F1, and ∆ to be a generator of F0. Given I and ∆,
we’ll take B to be the reciprocal of I/(∆) in the total ring of quotients of R/(∆).
Proposition 3.1 starts with an I and ∆; it asserts that the corresponding B has the
desired properties — in particular, that B is a ring whose first Fitting ideal F1 is
equal to I, and that B is Gorenstein if and only if I = (∆, α) : I for some α. The
proof shows that B is presented by a square matrix with RC. In fact, its transpose
presents I/(∆) and the transpose of its truncation is a Hilbert–Burch matrix of I.
Hence F1 is equal to the first Fitting ideal of I/(∆), and RC means simply that
F1 = I. Conversely, Proposition 3.6 starts with an algebra B and asserts that
its first Fitting ideal has most of the desired properties; the remaining ones follow
from Proposition 3.1. The correspondence is summarized formally in Theorem 3.7.
These results extend the corresponding work of Mond and Pellikaan [26] and of de
Jong and van Straten [7], with the notable exception of the characterization of the
Gorenstein B, which is new.

Our version of the correspondence features two conditions: (i) that ∆ ∈ I(2), and
(ii) that I is self-linked with ∆ as one of the self-linking elements. In the geometric
case, under the assumption that R/I is reduced, the equivalence of (i) with the
ring condition was explicitly proved by de Jong and van Straten [7, Thm. 1.2,
p. 529]. In this situation, I is generically a complete intersection; so their case
is covered by ours. Moreover, in their case, the map d : I/I2 → Ω1

R ⊗ R/I is
generically injective; hence, (i) means, in geometric terms, that the hypersurface
defined by the vanishing of ∆ is singular along the zero locus of I. On a different
tack, Eisenbud and Mazur, inspired by the recent Taylor–Wiles proof of Fermat’s
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last theorem, proved the following higher-codimensional version of the equivalence
of (i) and RC [10, Thm. 4]: if I has no embedded primes and has grade at least
r, then (i) implies that the (r − 1)-st Fitting ideal of I/(∆) is contained in I, and
the converse holds if also I is a complete intersection of height r locally at each
associated prime. As to (ii), it is equivalent to the condition that B is Gorenstein,
given that B is a ring. Indeed, it is not hard to see that α is simply an adjoint; that
is, αB = I/(∆). Nevertheless, this equivalence seems not to have been observed
before.

In addition to having intrinsic interest, these conditions (i) and (ii) suggest con-
sidering the symbolic Rees algebra Rs(I) :=

⊕
n≥0 I

(n)tn. Indeed, pursuing the

work of a number of others, Herzog and Ulrich [18, Cor. 2.5, p. 146] proved that, if
Rs I = R[It, I(2)t2], then I is self-linked in the case that R is regular of dimension
3, and that I is of codimension 2 and satisfies certain technical conditions. We will,
in a way, generalize this result, but our results are really new.

Theorem 3.4 asserts that, if R is Cohen–Macaulay with infinite residue class
field and if I is perfect of grade 2 and is a complete intersection at each associated
prime, then a necessary and sufficient condition for I to be self-linked with one of
the self-linking elements in I(2) is that Rs I = R[It,∆t2] for some ∆ ∈ I(2) and
that I(i) be perfect for every i > 0. In fact, necessity holds without the Cohen–
Macaulay hypothesis, see Proposition 3.3, and we suspect that sufficiency does too.
Furthermore, if I is self-linked with respect to some ∆ ∈ I(2) and α ∈ I, then
any general ∆ and α will do; this is an unusual phenomenon, and means that,
in examples, a random choice of ∆ and α will likely do. Theorem 3.4 also gives
another necessary and sufficient condition, namely, that I(2)/I2 be cyclic and the
analytic spread `(I(2)) be 2. Moreover, if the equivalent conditions of Theorem 3.4
hold then, curiously, all the symbolic powers I(i) are self-linked. In addition, then,
by Proposition 3.5, the symbolic Rees algebra Rs(I) is Cohen–Macaulay, and it is
Gorenstein if R is.

The quotient I(2)/I2 is rather interesting. Indeed, Proposition 3.8 asserts that, if
B is Gorenstein, then ∆ defines an isomorphism, R/F2

∼−→ I(2)/I2. This result was
proved under the additional hypothesis that F1 is radical by Mond and Pellikaan
[26, Thm. 4.4, p. 132]. In addition, they pointed out its “somewhat surprising”
geometric significance: the triple-point locus of a projection depends only on the
double-point locus, provided these loci have at least the expected codimensions.
Another proof was given by de Jong and van Straten [7, Thm. 2.8, p. 538].

In Section 4, we’ll return to the correspondence between the algebra B and
the pair (I,∆). It seems natural to seek critera guaranteeing that B is the entire
integral closure of A := R/(∆). Assume that R satisfies Serre’s conditions (R2)
and (S3). Proposition 4.1 asserts notably that, if B is normal, then ∆ ∈ I(2)

if and only if A := R/(∆) has multiplicity 2 locally at each associated prime of
I. Consequently, it is easy to find an example in which B is a normal ring, yet
∆ /∈ I(2); see Example 4.2. Finally, Theorem 4.4 asserts notably that, if R contains
an infinite and perfect field, if I is a complete intersection locally at each associated
prime, and if ∆ is a general element of I(2), then B is normal if and only if A has
multiplicity 2 locally at each associated prime of I; furthermore, if so, then B/A
is unramified in codimension 1. In other words, if ∆ ∈ I(2) is general, then the
hypersurface it defines is the image of the projection of a normal variety with I
as its adjoint ideal if and only if the hypersurface, generically along the zeros of I,
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consists of two smooth sheets, which may be tangent. Example 4.5 shows that it is
necessary that ∆ be taken general.

2. Symmetric matrices

In this section, we prove that, if a Gorenstein algebra B can be presented by a
square matrix ϕ with regular determinant, then we can take ϕ to be symmetric;
in fact, we can make ϕ symmetric via row operations, or if we prefer via column
operations. We use this result to derive a bound on the heights of the Fitting ideals
of B. We also prove that a perfect ideal I of grade 2 is self-linked if and only if,
via row operations, we can make any given n by n− 1 matrix presenting I possess
a symmetric n− 1 by n− 1 subblock.

Lemma 2.1. Let (R,m) be a local ring, and let lower-case Greek letters stand for
n by n matrices with entries in R. Let ϕ be such a matrix, and let r denote its rank
modulo m. Let ∆ be a nonzerodivisor in R contained in the annihilator of Cokϕ,
and let ‘ ’ indicate reduction modulo ∆. Further, assume that there is an exact
sequence,

R
n ψ→ R

n ϕ→ R
n
,(2.1.1)

where ψ is either symmetric or alternating; in the latter case, assume that r is
even. Then there exist invertible matrices ε and µ such that the products εϕ and
ϕµ are symmetric or alternating, respectively.

Proof. It suffices to show that there exist invertible matrices α, β such that αϕβ
is symmetric (or alternating). Indeed, let ‘∗’ indicate transpose, and set ε :=
β−1∗α and µ := βα−1∗. Then εϕ is equal to β−1∗αϕββ−1, which is obviously then
symmetric (or alternating). Similarly, ϕµ is symmetric (or alternating).

Because (R,m) is local, there exist invertible matrices α, β such that αϕβ has
the form, (

1r×r 0
0 ϕ′

)
,

or, if r = 2s, the form,  0 1s×s 0
−1s×s 0 0

0 0 ϕ′

 ,

where the entries of ϕ′ are in m. Replacing ϕ by αϕβ and ψ by β−1ψβ−1∗, we may
assume that ϕ itself has the displayed form. Now, ψϕ = 0, and ψ is symmetric (or
alternating). Hence, we may assume that ψ has the form,(

0r×r 0

0 ψ
′
)
,

where ψ
′

is still symmetric (or alternating). Therefore, the following sequence is
exact:

R
n−r ψ

′
→ R

n−r ϕ′
→ R

n−r
.

So, replacing ϕ by ϕ′, we may assume that all the entries of ϕ lie in m.
We may further assume that ψ is symmetric (or alternating). Using the exact

sequence (2.1.1), we now prove (in a manner reminiscent of an argument used by
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Shamash [30, pf. of Lem. 1, p. 454]) and by Eisenbud [9, 6.3, p. 55]) that the inverse
matrix ψ−1 is defined over the total quotient ring K of R and that there exists an
invertible matrix ε such that εϕ = ∆ψ−1.

First of all, ∆ · 1n×n = ϕχ for some χ; indeed, since ∆ annihilates the cokernel
of ϕ, every column of ∆ · 1n×n is a relation on Cokϕ, and so lies in the column
space of ϕ. Since ∆ is a nonzerodivisor, ϕ−1 and χ−1 exist over K and

χ = ∆ϕ−1.(2.1.2)

Consequently,

χϕ = ϕχ = ∆ · 1n×n.(2.1.3)

Since ϕχ vanishes and since (2.1.1) is exact, there exists a γ such that χ = ψγ.
Hence, for some λ,

χ = ψγ + ∆λ = ψγ + χϕλ,

where the second equality follows from (2.1.3). Now, the entries of ϕ lie in m;
hence, 1− ϕλ is invertible. Set ε := γ(1− ϕλ)−1. Then

χ = ψε.(2.1.4)

Hence, since χ is invertible over K, so are ψ and ε.
On the other hand, since (2.1.1) is a complex, there exists some η such that

ϕψ = ∆η = ϕχη.

Multiplication by ϕ−1 now yields ψ = χη. Substituting into (2.1.4), we conclude
that ε is, in fact, invertible over R. Finally, (2.1.4) and (2.1.2) yield that εϕ =
∆ψ−1. Now, ψ−1 is symmetric (or alternating). Hence α := ε and β := 1n×n are
as required, and the proof is complete.

Proposition 2.2. Let (R,m) be a local ring. Let ∆ be a nonzerodivisor in R, and
set A := R/(∆). Let M be an A-module that is presented, as an R-module, by an
n by n matrix ϕ. Assume that there exists a bilinear form b : M ×M → A which
induces a surjection,

M →→ HomA(M,A),

and which is either symmetric or alternating. In the latter case, assume that

n ≡ ν(M) mod 2,

where ν(M) denotes the minimal number of generators of M . Then there are
invertible n by n matrices ε and µ such that the products εϕ and ϕµ are symmetric
or alternating, respectively.

Proof. Let u1, . . . , un be generators of M corresponding to the presentation ϕ.
Let ‘ ’ indicate images in A, and let ‘∗’ indicate the dual of a given A-module or
A-map. Now, dualizing the exact sequence,

An
ϕ→ An →M → 0,

yields an exact sequence,

0 →M∗ → An∗
ϕ∗
→ An∗.(2.2.1)
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Set ψ :=
(
b(ui, uj)

)
. This is a symmetric (or alternating) n by n matrix with entries

in A. Since the ui correspond to the presentation of M by ϕ, our assumption on b
and the exactness of (2.2.1) imply the exactness of the following sequence:

An
ψ→ An∗

ϕ∗
→ An∗.

Obviously, modulo m, the rank of ϕ is equal to n−ν(M). Hence, Lemma 2.1 yields
the assertion.

Theorem 2.3. Let R be a Noetherian local ring, B a Gorenstein R-algebra. If B
is presented, as an R-module, by an n by n matrix ϕ with regular determinant, then
there exist invertible n by n matrices ε and µ such that εϕ and ϕµ are symmetric.

Proof. Set ∆ := detϕ and A := R/(∆). Since ∆ is R-regular and kills B, the

sequence 0 → R
∆→ R → A → 0 is exact and yields a natural isomorphism of

B-modules, HomA(B,A) = Ext1R(B,R). This Ext is B-isomorphic to B since B is
Gorenstein over R. Therefore, for some t ∈ HomA(B,A),

HomA(B,A) = Bt.(2.3.1)

Let m : B×B → B be multiplication on the commutative ring B, and consider
the symmetric A-valued bilinear form b := t ◦m. The equality (2.3.1) implies that
b induces a surjection,

B →→ HomA(B,A).

Hence, the assertion follows from Proposition (2.2).

Lemma (Laplace identity) 2.4. Let R be a commutative ring, ϕ an n by n ma-

trix with entries in R. Set ∆ := detϕ, denote by mj
i the minor of ϕ obtained by

deleting Row i and Column j, and denote by mj,l
i,k that obtained by deleting Rows

i and k and Columns j and l, where mj,l
i,k = 0 if i = k or j = l, and where the

determinant of the empty matrix is 1. Then, for 1 ≤ i ≤ k ≤ n and 1 ≤ j ≤ l ≤ n,

mj,l
i,k∆ = mj

im
l
k −ml

im
j
k.

Proof. We may assume that 1 = i < k and 1 = j < l. Let φ′ be the n− 1 by n− 1
matrix obtained by deleting the first row and column of ϕ, and let θ be the n by
n matrix obtained from adj(φ′) by adding a row of 0s at the top and a column of
0s on the left. We can now check the asserted identity by multiplying the familiar
equation,

∆1n×n = ϕ adj(ϕ),

on the left by θ.

Lemma 2.5. Let R be a Noetherian local ring, ϕ an n by n matrix with entries in
R. Let φ be the n by n− 1 matrix consisting of the last n− 1 columns of ϕ, and φ′

the submatrix of φ consisting of the last n−1 rows. Set ∆ := detϕ, set α := detφ′,
and set I := In−1(φ), the ideal of n− 1 by n− 1 minors. Assume grade I ≥ 2. Set
A := R/(∆) and let ‘ ’ indicate the image in A.

(1) Let ‘ ∗’ indicate the transpose. If ∆ is regular, then

I = Cok(ϕ) = Im(adjϕ) = Ker(ϕ),

HomA(I, A) = Ker(ϕ∗) = Im(adjϕ∗) = Cok(ϕ∗).
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(2) If ∆ is regular, then

In−1(ϕ) = In−1(φ) if and only if HomA(I, A) = HomA(I, I).

(3) If ϕ is symmetric, then ∆, α form an R-regular sequence, and I is self-linked
with respect to ∆, α; that is, (∆, α) : I = I.

Proof. Let ∆1, . . . , ∆n be the signed maximal minors of φ, and say

ϕ =

a1

... φ

an

 .

Then ∆ =
∑
ai∆i. Since grade I ≥ 2, the Hilbert–Burch sequence,

Rn−1 φ→ Rn → I → 0,

is exact. Hence, it induces this exact sequence:

An
ϕ→ An → I → 0.

Dualizing the latter yields the following exact sequence:

0 → HomA(I, A) → An∗
ϕ∗
→ An∗.

On the other hand, it is not hard to show that, if ∆ is regular, then the matrix
factorization ϕ · adjϕ = ∆1n×n yields the following two periodic exact sequences
(see [9, Prop. 5.1, p. 49]):

· · · → An
ϕ→ An

adjϕ→ An
ϕ→ An → · · · ;

· · · → An∗
ϕ∗
→ An∗

adjϕ∗
→ An∗

ϕ∗
→ An∗ → · · · .

Therefore, (1) holds.
Assume that ∆ is regular. Let ui : I → A, where 1 ≤ i ≤ n, be the generators

of HomA(I, A) that arise, in the above presentation of this module, from the dual
basis of An∗. Then

adjϕ∗ =
(
ui(∆j)

)
.

Thus In−1(ϕ) = I if and only if ui(I) ⊂ I for every i. It follows that (2) holds.
Assertion (3) holds by virtue of some of Valla’s work; see [32, Thm. 2.1, p. 97].

However, the following proof is more in the spirit of the present paper. Use the
notation of the preceding lemma. Then m1

1 = α and m1
i = (−1)i+1∆i. So the

preceding lemma (the Laplace identity) yields

mj,1
1,k∆ = mj

1m
1
k − αmj

k.

Assume ϕ is symmetric. Then mj
1 = m1

j . Hence (∆, α) ⊃ I2. Consequently, ∆, α
form an R-regular sequence.

Let K denote the total ring of quotients of A. Then IK = K because I contains
a nonzerodivisor, namely, α. View HomA(I, A) as a submodule of HomK(IK,K),
and view the latter as K by identifying a map u with multiplication by u(1). Then
HomA(I, A) becomes identified with A :K I, and HomA(I, I) with I :K I. Consider
the image of HomA(I, A) in An∗, and project it on the first coordinate; clearly, the
projection is (A :K I)α. The latter is equal to (α) :K I, so to (α) :A I because
α ∈ I is a nonzerodivisor. On the other hand, the image of HomA(I, A) is equal
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to Im(adjϕ∗) by (1). Hence its projection is equal to the ideal generated by the
first row of adjϕ∗. Since ϕ is symmetric, the latter is (∆1, . . . ,∆n), or I. Thus
(α) : I = I, and so (∆, α) : I = I. The proof is now complete.

Theorem 2.6. Let R be a Noetherian local ring, let I be a perfect R-ideal of grade
two, and let φ be an n by n − 1 matrix with entries in R presenting I. Then the
following two conditions are equivalent:

(i) The ideal I is self-linked.
(ii) There exists an invertible n by n matrix ε with entries in R such that the

n− 1 by n− 1 matrix consisting of the last n− 1 rows of εφ is symmetric.

Proof. We first show that (i) implies (ii). Assume that (∆, α) : I = I. Then ∆, α
form an R-regular sequence contained in I, because

I2 ⊂ (∆, α) ⊂ (∆, α) : I = I.

Let ∆1, . . . , ∆n be the signed maximal minors of φ. They generate I by the
Hilbert–Burch Theorem, which applies because I is perfect of grade two. So, since
∆ is in I, there are elements a1, . . . , an of R such that ∆ =

∑
ai∆i. Set

ϕ :=

a1

... φ

an

 .

Then detϕ = ∆. Set A := R/(∆) and let ‘ ’ indicate the image in A. Notice that
the following sequence is exact:

Rn
ϕ→ Rn → I → 0.

Let K denote the total ring of quotients of A, and t : K → K multiplication by
1/α. As in the proof of Lemma 2.5, we can see that HomA(I, A) is equal to A :K I.
The latter is clearly equal to

(
α :A I

)
(1/α). Hence, the self-linkage assumption

yields

HomA(I, A) = It.(2.6.1)

On the other hand, since I
2 ⊂ (α), multiplication on A, followed by t, defines

a symmetric bilinear form b : I × I → A. By virtue of (2.6.1), b induces an
isomorphism,

I ∼−→ HomA(I, A).

Proposition 2.2 now implies (ii).
Conversely, assume (ii). Since ε is invertible, εφ also presents I. Hence, we may

assume that

φ =

(
a2 · · · an

φ′

)
for suitable elements a2, . . . , an and a suitable symmetric n − 1 by n − 1 matrix
φ′. Set

ϕ :=


0 a2 · · · an
a2

... φ′

an


and apply Lemma 2.5. Thus (ii) implies (i), and the proof is complete.
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Proposition 2.7. Let R be a Noetherian local ring, ∆ an R-regular element, and
set A := R/(∆). Let M be an A-module. Assume that Mp is a free Ap-module of
rank two for every prime ideal p of A with depthAp ≤ 1, that M is orientable (that

is, (∧2M)
∗∗ ∼= A where ‘ ∗’ indicates the dual module), and that M is presented, as

an R-module, by an n by n matrix ϕ with n ≡ ν(M) mod 2, where ν(M) denotes
the minimal number of generators of M . (For instance, let M be an orientable
maximal Cohen–Macaulay module of rank two over a hypersurface ring.)

(1) Then there are invertible n by n matrices ε and µ with entries in R such
that εϕ and ϕµ are alternating.

(2) (Herzog and Kühl [17, Thm. 3.1(a), p. 82 ]) Then ν(M) is even.
(3) For i < ν(M)/2,

height FittA2i(M) = height FittA2i+1(M) ≤ 2i2 + 3i.

Proof. To prove (1), consider the alternating bilinear form,

b : M ×M → ∧2M → (∧2M)∗∗ ∼−→A,

where the first two maps are the natural maps; it induces a surjection M → M∗

since M is free locally in depth 1. Hence Proposition 2.2 yields (1).
For (2), we may assume that n = ν(M) and that ϕ is alternating. Notice that

∆ ∈ AnnR(M) ⊂
√

FittR0 (M).

In particular, detϕ 6= 0, and hence n is even.
Consider (3). (The special case i = 1 is also a special case of [3, Cor. 2, p. 23],

because M is a second syzygy module of itself over A.) By (2), n is even. Hence,
by [5, Cor.2.6, p. 462], √

FittR2i(M) =

√
FittR2i+1(M),

and these two radicals are also equal to the radical of the ideal of n− 2i Pfaffians
of ϕ. The latter ideal has height at most

(
2i+2

2

)
by [20, Thm. 2.1, p. 191], where

this statement is shown to follow from [8, pp. 202–3]. Since these radicals contain
∆, we conclude that

heightFittA2i(M) = height FittA2i+1(M) ≤
(

2i+ 2

2

)
− 1 = 2i2 + 3i.

Lemma 2.8. Let R be a local ring, B an R-algebra. Assume that, with respect to
a set of generators 1, u2, . . . , un, the R-module B can be presented by a symmetric
or alternating n by n matrix ϕ with regular determinant. Set Fi := FittRi (B).
Let φ′ be the matrix obtained by deleting the first row and column of ϕ, and set
F ′i := In−i(φ′). Then, for i ≥ 2, √

Fi =
√
F ′i .

Proof. Let p be a prime ideal of R containing F ′i . We need to show that p contains
Fi. Localizing at p, we may assume that p is equal to the maximal ideal m of R. If
some entry of φ′ lies outside of m, then we may perform row and column operations
to reduce the size of ϕ, until φ′ has all its entries in m. Furthermore, F ′i 6= R; so
n− i ≥ 1. Hence n− 1 ≥ i ≥ 2. Therefore, F0 ⊂ m, or equivalently, B 6= 0.
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Say ϕ = (aij). We are going to show that the aij lie in m. Suppose that a1j /∈ m
for some j with 2 ≤ j ≤ n. Then 1 ∈ mB because the columns of ϕ yield relations
among 1, u2, . . . , un and because φ′ has all its entries in m. Hence B = mB.
However, B 6= 0. Therefore, a1j ∈ m for 2 ≤ j ≤ n, and so aj1 ∈ m too because ϕ
is symmetric or alternating. Finally, repeating the argument with the first column
of ϕ, we see that a11 ∈ m as well. Thus aij ∈ m for all i, j. So Fi ⊂ m since
n− i ≥ 1.

Proposition 2.9. (1) Let R be a Noetherian local ring, B a finite R-algebra. As-
sume that B is a perfect R-module of grade 1 and that B is Gorenstein over R. Set
Fi := FittRi (B). Then, for i ≥ 2, either heightFi ≤

(
i+1
2

)
or Fi = R.

(2) Let R be a regular local ring, ∆ an R-regular element, and set A := R/(∆).
Let B be an A-algebra. Assume that B is a finitely generated A-module of rank 2 and
that B is a Cohen–Macaulay ring. Set F2 := FittR2 (B). Then either heightF2 ≤ 4
or F2 = R.

Proof. In (1), the assertion follows from Theorem 2.3, from Lemma 2.8, and from
[19, Thm. 2.1, p. 597] applied to the n− 1 by n− 1 matrix φ′ of Lemma 2.8.

Consider (2). Suppose that heightF2 > 4; then heightFittA2 (B) > 3. Hence, as
an A-module, B is free of rank 2 locally in codimension 3. Therefore, the reflexive
A-ideal (∧2B)∗∗ is principal locally in codimension 3. Hence, (∧2B)∗∗ is globally
principal by [16, Thm. 3.13(ii), p. 132]; in other words, B is an orientable A-module.
Therefore, Proposition 2.7 applies, and the assertion follows from Lemma 2.8 and
[20, Thm. 2.1, p. 191].

Example 2.10. The bound in Proposition 2.9(1) can fail if B isn’t assumed to be
Gorenstein over R, even for i = 2. For example, let n ≥ 3, let R be the power
series ring in n(n − 1) variables over a field, and let I be the ideal of maximal
minors of an n by n − 1 matrix φ in those variables. Let ∆ ∈ I2, and let B be
the reciprocal of I/(∆), viewed as a fractional ideal in the total ring of quotients
of R/(∆). Then B is an R-algebra, which is a perfect R-module of grade 1, by
Parts (1) and (2) of Proposition 3.1 below. Moreover, the proof of Part (1) shows
that F2 may be described as the ideal of n−2 by n−2 minors of the n by n matrix
obtained by adding to φ the column of combining coefficients in an expansion of
∆ as a linear combination of the maximal minors of φ. So F2 contains the ideal of
n−2 by n−2 minors of φ. Therefore, heightF2 ≥ 6. This example also shows that
Proposition 2.9(2) can fail if B is of rank 1.

Lemma 2.11. Let R be a Noetherian local ring. Let B be an R-algebra, and assume
that, as an R-module, B is finitely generated and perfect of grade 1. Set A :=
R/FittR0 (B), and let K and L be the total rings of quotients of A and B. Then the
following six conditions are equivalent:

(i) A ⊂ B. (ii) grade(FittR1 (B)) ≥ 2.
(iii) K →→ K ⊗A B. (iv) K = K ⊗A B.
(v) B ⊂ K. (vi) K = L.

If R satisfies Serre’s condition (S2), then the above six conditions are equivalent
to the following one:

(vii) f : Spec(B) → Spec(A) is birational onto its image.

Proof. Let ϕ be an n by nmatrix with entries in R presentingB, and set ∆ := detϕ.
Then ∆ is R-regular, and (∆) = FittR0 (B).



GORENSTEIN RINGS, SYMMETRIC MATRICES, ETC. 4985

Conditions (i) and (ii) are equivalent. Indeed, (i) says that (∆) = AnnR(B).
However,

Ann(B) = (∆) : FittR1 (B)

by [4, Theorem, p. 232], which applies because ∆ is an R-regular element contained

in FittR1 (B). Hence, (i) holds if and only if FittR1 (B) is not contained in any
associated prime of (∆), and the latter condition is equivalent to (ii).

Conditions (ii) and (iii) are equivalent. Indeed, (ii) says that, for each p ∈
Ass(A),

FittA1 (B) = FittR1 (B) ·A 6⊂ p.

Equivalently, the Ap-module Ap⊗AB is cyclic. Or, equivalently again, the natural
map from Ap to Ap ⊗A B is surjective. The latter condition is simply (iii).

Trivially, (iv) implies (iii), and the converse holds because (iii) implies (i) and
K is A-flat.

Condition (iv) implies (v) because, in any event, B ⊂ K ⊗A B. Indeed, take
p ∈ AssA(B) and let q be the preimage of p in R. Since B is a perfect R-module
of grade one, depthRq = 1 by the Auslander–Buchsbaum formula. On the other
hand, p contains the R-regular element ∆. Hence,

q ∈ AssR
(
R/(∆)

)
= AssR(A).

Therefore, p ∈ AssA(A). Consequently, every element of A regular on A is also
regular on B, and so B ⊂ K ⊗A B.

Condition (v) implies (i) because A ⊂ K. Condition (v) implies (vi). Indeed, if
B ⊂ K, then every nonzerodivisor on A is a nonzerodivisor on B, and so B ⊂ K ⊂
L, whence K = L since K is its own total ring of quotients.

The map f is locally of flat dimension 1 by the equivalence of (iii) and (vi)
of [22, (2.3)]. Hence f is locally of codimension 1 by (2.5)(1) of [22, (2.5)]. By

[22, (3.2)(1)], therefore, f is birational onto its image if and only if FittR1 (B) is
not contained in any minimal prime of (∆). If R satisfies (S2), then (∆) has only

minimal associated primes. However, FittR1 (B) is not contained in any associated
prime of (∆) if and only if Condition (ii) holds.

Proposition 2.12. Let R be a Noetherian local ring, and B an R-algebra. Assume
that, as an R-module, B is finitely generated and perfect of grade 1. Assume that
one of the equivalent conditions (i)–(vi) of Lemma 2.11 holds. Let ϕ be an n by n
matrix with entries in R presenting B. Then there are invertible n by n matrices ε
and µ with entries in R such that εϕµ is symmetric if and only if B is Gorenstein
over R.

Proof. If there is a symmetric matrix ϕ such that the sequence,

0 −→ Rn
ϕ→ Rn −→ B −→ 0,

is exact, then there is an isomorphism of A-modules,

Ext1R(B,R) ∼= B,

and it is even B-linear since A ⊂ B ⊂ K, where A and K are as in Lemma 2.11.
The converse holds by Theorem 2.3.
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3. Symbolic powers

In this section, we establish a bijective correspondence between the set of perfect
algebras B of grade 1 and the set of perfect ideals I of grade 2 with a preferred
member ∆ of its second symbolic power, determined up to unit multiple; the first
(resp., the second) Fitting ideal of B must have grade at least 2 (resp., at least
3), and I must be a complete intersection locally at each associated prime. The
Gorenstein B correspond to the self-linked I with ∆ as one of the self-linking
elements. Proposition 3.1 starts with an I and ∆, takes B to be the reciprocal
of I/(∆) in the total ring of quotients K of A := R/(∆), and shows that B has
the requisite properties. Conversely, Proposition 3.6 starts with a B, takes I to
be its first Fitting ideal, and shows that I has most of the requisite properties;
the remaining ones follow from Proposition 3.1. We summarize the correspondence
formally in Theorem 3.7. In addition, we investigate the symbolic Rees algebra
Rs I; notably, Theorem 3.4 gives a criterion in terms of Rs I for I to be self-linked
with ∆ as one of the self-linking elements.

To recall the precise definitions, let I be an ideal in a Noetherian ring R, set
S := R/I, let W be the complement in R of the union of all associated primes of I,
and let n ≥ 0 be an integer. Then the nth symbolic power I(n) of I is the preimage
of InRW in R. For n > 0, notice that In ⊂ I(n) ⊂ I and that

(I(n) ∩ In−1)/In

is the S-torsion of In−1/In. The symbolic Rees algebra of I is the graded subalgebra,

Rs I :=
⊕
n≥0

I(n)tn,

of the polynomial ring R[t] in one variable t. This algebra need not be Noetherian,
even if I happens to be a prime ideal in a regular ring; see [28], [29], and [14].

Proposition 3.1. Let R be a Noetherian local ring, I a perfect ideal of grade 2,
and ∆ ∈ I a nonzerodivisor. Set A := R/(∆), and let ‘ ’ indicate the image in A.

Let K be the total ring of quotients of A, and set B := A :K I and Fi := FittRi (B).
(1) Then I and B are perfect R-modules of grade 1. In addition,

FittR1 (I) = I, F0 = (∆), Fi = FittRi (I), and I = A :K B.

(2) Then the following four conditions are equivalent: (a) B is a ring; (b) B =
I :K I; (c) BI = I; and (d) F1 = I. Moreover, those four conditions are implied
by this fifth condition: (e) ∆ ∈ I(2).

(2′) If gradeF2 ≥ 3, then all five conditions (a) to (e) of (2) are equivalent.
(3) If I is a complete intersection at each associated prime, then gradeF2 ≥ 3,

and the converse holds if one of the conditions (a) to (e) of (2) holds.
(4) Assume that B is a ring. Let α ∈ I. Then the following conditions are

equivalent: (i) B is Gorenstein over R, and α /∈ In for any maximal ideal n

of B; (ii) α is a nonzerodivisor and B = α−1I; (iii) I = αB; (iv) I
2

= αI;
(v) I = (α) :A I; and (vi) I = (∆, α) : I.

Proof. Let φ be an n by n− 1 matrix with entries in R presenting I. Let ∆1, . . . ,
∆n be the signed maximal minors of φ. They generate I by the Hilbert–Burch
Theorem; in other words, FittR1 (I) = I. So, since ∆ is in I, there are elements a1,
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. . . , an of R such that ∆ =
∑
ai∆i. Set

ϕ :=

a1

... φ

an

 .

Then detϕ = ∆. Furthermore, ϕ presents I. Hence, Lemma 2.5(1) yields

I = Ker(ϕ) and HomA(I, A) = Cok(ϕ∗).

Dualize the second equation and combine the result with the first; thus

HomA(HomA(I, A), A) = I.

On the other hand, Cok(ϕ∗) = Cok(ϕ∗) because ∆ annihilates Cok(ϕ∗) since ∆ =
detϕ∗. Hence the second equation above implies that HomA(I, A) is presented
by ϕ∗ and is perfect of grade 1. Finally, I contains a nonzerodivisor because
grade I ≥ 2; hence, there is a natural identification of HomA(I, A) with B, and
of HomA(B,A) with A :K B; see the end of the proof of 2.5. Therefore, (1) holds.

Consider (2). Obviously, (c) implies (b), and (b) implies (a); also, (a) implies
(c) because I = A :K B by (1). Now, it follows from the preceding paragraph that

F1 = In−1(ϕ), I = In−1(φ), HomA(I, A) = B and HomA(I, I) = I :K I.

Hence, (d) and (b) are equivalent by Lemma 2.5(2). Thus the four conditions (a)
to (d) are equivalent.

Finally, assume (e), that ∆ ∈ I(2). We’ll prove (d), that F1 = I. Now,

F1 = In−1(ϕ
∗) ⊃ In−1(φ) = I.

Hence, it suffices to prove (d) after localizing at an arbitrary associated prime of I.
But then I(2) = I2, so ∆ ∈ I2. Hence we may assume that ai ∈ I because the ∆i

generate I. Therefore,

F1 = In−1(ϕ
∗) ⊂ In−1(φ) + I = I.

Hence F1 = I. Thus (2) holds.
Consider (2′). The Laplace identity (2.4) implies that F2(∆) ⊂ F 2

1 . Hence, if
F1 = I, then ∆ ∈ I(2) because F2 lies in no associated prime of I as I is perfect of
grade 2 and gradeF2 ≥ 3.

Consider (3). First assume that I is a complete intersection at each associated
prime. Since I is perfect of grade 2, every prime p such that p ⊃ I and depthRp =
2 is associated to I. Hence Ip can be generated by two elements. Therefore,

gradeFittR2 (I) ≥ 3. Hence, gradeF2 ≥ 3 because

F2 = In−2(ϕ
∗) ⊃ In−2(φ) = FittR2 (I).

Conversely, assume that gradeF2 ≥ 3 and that one of the conditions (a) to (e)
of (2) holds. Then ∆ ∈ I(2) by (2′). Now, let p ∈ Ass(I), and replace R by Rp.

Then I(2) = I2. In addition, F2 = R because gradeF2 ≥ 3, but depthRp = 2.

Hence (1) implies that I is generated by two elements. Lift them to I. Those lifts
generate I because ∆ ∈ I(2) = I2. Hence the lifts form a regular sequence because
grade I = 2.

Consider (4). The canonical isomorphisms,

Ext1R(B,R) = HomA(B,A) = A :K B = I,
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are obviously B-linear. Hence, B is Gorenstein over R if and only if I is B-
isomorphic to B. Therefore, (i) implies (iii), and the converse holds because I
contains a nonzerodivisor. Obviously, (ii) and (iii) are equivalent. Obviously, (iii)
implies (iv). Suppose (iv) holds. Then α is a nonzerodivisor, because α divides
the square of any element of I, and I contains a nonzerodivisor. So (α−1I)I = I.
So α−1I ⊂ B because B = I :K I by (2). However, αB ⊂ I because α ∈ I; so
B ⊂ α−1I. So (ii) holds. Thus (i) to (iv) are equivalent.

If (v) holds, then α is a nonzerodivisor, because, again, α divides the square of
any element of I. Now, whenever α is a nonzerodivisor, then, clearly,

(α) :A I = (α) :K I = α(A :K I) = αB.

Hence, (iii) and (v) are equivalent. Obviously, (v) and (vi) are equivalent.

Lemma 3.2. Let R be a Noetherian local ring with infinite residue field, and let
I be an ideal of grade 2 that is a complete intersection at each associated prime.
Assume that the analytic spread `(I(2)) of I(2) is equal to 2, and that I(2)/I2 is a
cyclic module. Let ∆ ∈ I(2) be a general element, and α ∈ I an element whose
image in I/(∆) is general. Then I = (∆, α) : I.

Proof. Let ‘ ’ indicate the image in R/(∆). Now, since ∆ ∈ I(2) is general, it is part
of a set of `(I(2)) elements generating a reduction J of I(2). Then J is a reduction

of I(2), and so J requires at least `
(
I(2)
)

generators. Hence `(I(2)) ≤ `(I(2)) − 1,

and therefore `(I(2)) = 1. On the other hand, I(2) = I2 + (∆); hence, I(2) = I2.

Therefore, `(I
2
) = 1. Consequently, `(I) = 1. Since α ∈ I is general, therefore α

generates a reduction of I. In particular, I and α have the same radical. So I and
(∆, α) have the same radical too. Therefore, every associated prime p of (∆, α)
is one of I; indeed, depthRp = 2 and p ⊃ I, whence depth(R/I)p = 0 since I is
perfect of grade 2.

It suffices to check the equation I = (∆, α) : I locally at each of the (finitely
many) associated primes p of I, since any associated prime of (∆, α) : I is one of
(∆, α), so one of I. Localizing at p, we may assume that I is a complete intersection.
Let m denote the maximal ideal of R. Then α /∈ mI because α ∈ I is general. So
α /∈ mI. Hence I = (α, β) for some β, and α, β form a regular sequence. Hence
the associated graded ring grI(R) is a polynomial ring over R/I; see [25, p. 125]
for instance. In particular, grI(R) is torsion free over R/I; hence, I(2) = I2.

Therefore, ∆ ∈ I2. So ∆ = rα2 + sαβ + tβ2 for some r, s, t. Now,
√
I =

√
(∆, α),

so Ii = (∆, α) ∩ Ii for some i. On the other hand, by the generality of ∆ and
α, their leading forms in grI(R) have degrees 2 and 1, and they form a regular
sequence; it follows that (∆, α) ∩ Ii = ∆Ii−2 + αIi−1 (see [31, Thm. 2.3, p. 97]
for instance). Hence Ii = ∆Ii−2 + αIi−1. Suppose t ∈ m. Then Ii = αIi−1 + tIi.
So Nakayama’s lemma implies that Ii = αIi−1. Hence Ii ⊂ (α). However, this
inclusion is impossible because Ii has grade 2. Thus t /∈ m. Hence (∆, α) = (α, β2).
Hence,

(∆, α) : I = (α, β2) : (α, β) = (α, β) = I.

Proposition 3.3. Let R be a Noetherian local ring, I a perfect ideal of grade 2.
Assume that I is a complete intersection at each associated prime, and that I =
(∆, α) : I for some ∆ ∈ I(2) and some α ∈ I.
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(1) If also R has an infinite residue field, then I = (∆, α) : I for any general
∆ ∈ I(2) and any α ∈ I whose image in I/(∆) is general.

(2) Then I(2)/I2 is cyclic, and `(I(i)) = 2 for every even i > 0.
(3) Then I(i) is a self-linked perfect ideal for every i > 0.
(4) Then the symbolic Rees algebra Rs I is Noetherian; in fact,

Rs I = R[It,∆t2].

Proof. Set A := R/(∆) and let ‘ ’ indicate the image in A. First, we show that,
for every i ≥ 2,

I(i) = αi−1I +
(
(∆) ∩ I(i)

)
.(3.3.1)

That equation is equivalent to this one: I(i) = αi−1I. The latter may be checked

at each associated prime p of the R-module I(i)/αi−1I, which is a submodule of
A/αi−1I. So p must be an associated prime of A/αi−1I. So (A/αi−1I)p has depth

0. Hence (αi−1I)p has depth 1. Hence Ip has depth 1. Now, A/I = R/I, and so
there is a short exact sequence,

0 → Ip → Ap → (R/I)p → 0.

Therefore, either depthAp ≤ 1 or depth(R/I)p = 0. In the former case, depthRp ≤
2. Hence, again depth(R/I)p = 0. So, in any case, either I 6⊂ p, or p is an associated

prime of the ideal I. Hence (I(i))p = (Ii)p. On the other hand, Parts (2) and (4)

of Proposition 3.1 yield I
i

= αi−1I. Hence (I(i))p = (αi−1I)p, and the proof of
(3.3.1) is complete.

Next, we show that, for every i ≥ 2,

(∆) ∩ I(i) = ∆I(i−2).(3.3.2)

First, consider the case where I is generated by a regular sequence. Suppose that
∆ ∈ mI2, where m denotes the maximal ideal of R. Then

I2 = I2 ∩ (∆, α) = I2 ∩ (mI2, α) = mI2 + (α) ∩ I2.

So Nakayama’s lemma implies that I2 = (α) ∩ I2 ⊂ (α). However, this inclusion is
impossible because I2 has height 2. Thus ∆ ∈ I2 \mI2. Hence, in the associated
graded ring grI R, the leading form of ∆ is a regular element, because grI R is a
polynomial ring. Consequently, (∆) ∩ Ii = ∆Ii−2. Thus (3.3.2) holds for complete
intersections.

To prove (3.3.2) in general, it suffices to show that (∆)∩ I(i) lies in ∆I(i−2). So
let p be an associated prime of the ideal ∆I(i−2). We may assume that I ⊂ p, since
the assertion is trivial otherwise. But, then

depth(I(i−2))p = depth(∆I(i−2))p = 1.

Hence p is an associated prime of the ideal I(i−2) (and so i − 2 ≥ 1). Therefore,
by the definition of symbolic powers, p is contained in the union of the associated
primes of the ideal I; so p is contained in one of them. Hence, again, Ip is gener-
ated by a regular sequence, and so the assertion follows from the discussion in the
preceding paragraph.

Together, (3.3.1) and (3.3.2) yield the following equation: for i ≥ 2,

I(i) = αi−1I + ∆I(i−2).(3.3.3)
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In turn, that equation yields, via induction on j, this one: for j ≥ 1,

I(2j) = α(∆, α2)j−1I + (∆j).(3.3.4)

On the other hand, (3.3.3) immediately yields Assertion (4).
To prove Assertions (1) and (2), note that I(2) = αI+(∆) by (3.3.3). So I(2)/I2

is cyclic. Furthermore,

(I(2))2 = α2I2 + ∆αI + (∆2) ⊂ (∆, α2)I(2) ⊂ (I(2))2.

Hence (I(2))2 = (∆, α2)I(2). Since (∆, α2) lies in I(2), it is therefore a reduction of
I(2). Hence `(I(2)) = 2. Therefore, Lemma 3.2 implies Assertion (1). Moreover,
similarly, (3.3.4) implies that (∆j , α2j) is a reduction of I(2j); hence, `(I(2j)) = 2.
Thus Assertion (2) holds.

Together, (3.3.2) and (3.3.3) yield the following short exact sequence for i ≥ 2:

0 → I(i−2) ∆→ I(i) → αi−1I → 0.(3.3.5)

Since the R-module I has projective dimension at most 1, so do I and therefore also
αi−1I. Hence it follows from (3.3.5), via induction on i, that I(i) too has projective
dimension at most 1. Therefore, I(i) is perfect, as asserted in (3).

To prove that I(i) is self-linked, we first treat the case where i is odd, say,
i = 2j − 1 with j ≥ 1. In fact, we claim that

I(2j−1) = (∆j , α2j−1) : I(2j−1).(3.3.6)

Now, I = (∆, α) : I. So I2 ⊂ (∆, α) ⊂ I. Hence I and (∆, α) have the same radical.
Hence I2j−1 and (∆j , α2j−1) have the same radical as I. Therefore, it suffices to
establish (3.3.6) locally at each associated prime p of I. However, by localizing at p,
we may assume that I(2j−1) = I2j−1, that I = (α, β), and that ∆ = rα2+sαβ+tβ2

for some r, s, t. Here t has to be a unit; otherwise, I(2) 6= αI + (∆), contradicting
(3.3.3). So we may suppose that ∆ = rα2 + sαβ + β2.

We thus need to show that

(∆j , α2j−1) : (α, β)2j−1 = (α, β)2j−1,(3.3.7)

where ∆j =
∑2j−2
k=0 bkα

2j−1−kβk + ββ2j−1 with bk ∈ (α, β). Now, (α, β)2j−1 is
generated by the signed maximal minors d1, . . . , d2j of the following 2j by 2j − 1
matrix: 

−β
α −β

α
. . .

. . . −β
α

 .
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Adjoin the two columns of coefficients that arise when ∆i and α2j−1 are written in
terms of the minors d1, . . . , d2j , obtaining the following 2j by 2j + 1 matrix:

−β b0 1
α −β b1 0

α
. . .

...
...

. . . −β b2j−2 0
α β 0

 .

Its maximal minors generate the link (∆j , α2j−1) : (α, β)2j−1; see [1, p. 316]. The
preceding matrix may be reduced to the following one:

α −β b1

α
. . .

...
. . . −β b2j−2

α β

 .

Denote the minor obtained by deleting the ith column by Di. Then

(Dl, . . . , D2j) = (αl−1β2j−l, . . . , α2j−1)

for 1 ≤ l ≤ 2j, as can be proved easily via descending induction on l because
bk ∈ (α, β). In particular, (D1, . . . , D2j) = (α, β)2j−1 . Thus the asserted equation
(3.3.7) holds.

If i is even, say i = 2j with j ≥ 1, then we claim that

I(2j) = (∆j , α2j+1) : I(2j).

Set C := R/(∆j); let ‘˜’ indicate the image in C; and let L denote the total

ring of quotients of C. In these terms, our claim asserts that Ĩ(2j) is equal to

(α̃2j+1) :C Ĩ(2j). However,

Ĩ(2j) = α̃Ĩ(2j−1)

= α̃
(
(α̃2j−1) :C Ĩ(2j−1)

)
= α̃
(
(α̃2j−1) :L Ĩ(2j−1)

)
= (α̃2j+1) :L (α̃Ĩ(2j−1))

= (α̃2j+1) :C (α̃Ĩ(2j−1))

= (α̃2j+1) :C Ĩ(2j).

Indeed, the first and the last equations hold by (3.3.4); the second equation holds

by the case of an odd i; the third and fifth equations hold because α̃ lies in Ĩ and
is a nonzerodivisor; and the fourth equation holds because α̃ is a nonzerodivisor.
Thus the assertion about self-linkage holds. So Assertion (3) holds, and the proof
of 3.3 is complete.

Theorem 3.4. Let R be a Cohen–Macaulay local ring with infinite residue field,
and I a perfect ideal of grade 2 that is a complete intersection at each associated
prime. Then the following conditions are equivalent:

(i) I = (∆, α) : I for some ∆ ∈ I(2) and some α ∈ I;
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(i′) I = (∆, α) : I for any general ∆ ∈ I(2) and any α ∈ I whose image in I/(∆)
is general;

(ii) I(2)/I2 is cyclic, and `(I(2)) = 2;
(iii) Rs I = R[It,∆t2] for some ∆ ∈ I(2), and I(i) is a perfect ideal for every

i > 0;
(iv) Rs I = R[It,∆t2] for some ∆ ∈ I(2), and I(i) is a Cohen–Macaulay ideal for

infinitely many i > 0.

Moreover, if one of the preceding conditions obtains, then I(i) is self-linked for every
i > 0, and Rs I is a Cohen–Macaulay ring.

Proof. First, (ii) implies (i′) by Lemma 3.2, and (i′) implies (i) trivially. Second, (i)
implies (ii) and (iii), and (i) implies that I(i) is self-linked, all by Proposition 3.3.
(Those implications do not require the Cohen–Macaulay hypothesis, but the re-
maining implications do.) Third, clearly, (iii) implies (iv). Fourth, assume (iv).
Then Rs I = R[It, I(2)t2]; hence, I(2i) = (I(2))i for every i > 0. Therefore, infin-
itely many powers of I(2) are Cohen–Macaulay ideals of height 2. Hence, `(I(2)) = 2;
see [2, Thm. 2, p. 36]. On the other hand, I(2) = I2 + (∆); so I(2)/I2 is cyclic.
Thus (ii) holds, and so (i) to (iv) are equivalent. Finally, (i) implies that Rs I is
Cohen–Macaulay by the next proposition.

Proposition 3.5. Let R be a Noetherian local ring, I a perfect ideal of grade
2. Assume that I is a complete intersection at each associated prime, and that
I = (∆, α) : I for some ∆ ∈ I(2) and some α ∈ I. If R is Cohen–Macaulay or
Gorenstein, then so is Rs I.

Proof. Set A := R/(∆) and let ‘ ’ indicate the image in A. Form the graded ring
G :=

⊕
i≥0 I

(i)/I(i+1) associated to the filtration { I(i) | i ≥ 0 } of R. Denote the

leading form of ∆ in G by ∆′. Then deg ∆′ ≥ 2 since ∆ ∈ I(2). On the other hand,
for every i ≥ 1,

∆
(
I(i+1) : (∆)

)
= (∆) ∩ I(i+1) = ∆I(i−1);

indeed, the first equation is obvious, and the second is (3.3.2). Hence

I(i+1) : (∆) = I(i−1)

because ∆ is R-regular. Therefore, deg ∆′ = 2 and ∆′ is G-regular. Furthermore,
again by (3.3.2), for every i ≥ 2,

I(i+1) + ∆I(i−2) = I(i+1) +
(
(∆) ∩ I(i)

)
.

Therefore, G/(∆′) =
⊕

i≥0 I
(i)
/
I(i+1). Finally, (3.3.3) gives I(i) = Ii for every

i ≥ 2; in fact, then, obviously, this equation holds for every i ≥ 0. Therefore,

G/(∆′) =
⊕

i≥0 I
(i)
/
I(i+1) =

⊕
i≥0 I

i
/
Ii+1 = grI A.

Thus there is a short exact sequence of graded G-modules,

0 → G(−2)
∆′→ G→ grI A→ 0.(3.5.1)

Let α′ denote the leading form of α in grI A. Then α′ is a regular element on

grI A of degree one; indeed, Ii+1 : (α) = Ii, because α is an A-regular element

contained in I and because I
i+1

= αI
i
for every i ≥ 1 by (3.3.3). Moreover, αI

i−1

is equal to α∩Ii because the latter is equal to α
(
Ii : (α)

)
. Therefore, grI A/(α

′) can
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be identified with the associated graded ring of the ideal Ĩ := I/(∆, α) in R/(∆, α).

The latter graded ring is equal to the trivial extension S n Ĩ(−1) of S := R/I

because Ĩ2 = 0. Thus there is an exact sequence of graded G-modules,

0 → grI A(−1)
α′→ grI A→ S n Ĩ(−1) → 0.(3.5.2)

Sequences (3.5.1) and (3.5.2) say, in other words, that the leading forms ∆′ and α′

of ∆ and α in G have degrees two and one, that they form a regular sequence, and

that G/(∆′) is equal to grI A and G/(∆′, α′) is equal to S n Ĩ(−1).
Set d := dimR. Let m denote the maximal ideal of R, and M the irrelevant

maximal ideal of G. Given a finitely generated graded G-module of dimension s,
let Hj

M(E) denote the jth local cohomology module of E with supports in M, and
set

a(E) := sup{ i | [Hs
M(E)]i 6= 0}.

Assume now that R is a Cohen–Macaulay ring. Then S is a Cohen–Macaulay

ring, and Ĩ a maximal Cohen–Macaulay S-module because I is a perfect R-ideal of

grade 2; hence, S n Ĩ(−1) is a Cohen–Macaulay ring. Therefore, grI A and G are
Cohen–Macaulay too, because ∆′ and α′ form a regular sequence. Furthermore,

Hd−2
M (S n Ĩ(−1)) = Hd−2

mG (S n Ĩ(−1)) = Hd−2
m (S n Ĩ(−1))

= Hd−2
m (S)⊕Hd−2

m (Ĩ)(−1).

Hence a(S n Ĩ(−1)) = 1. Hence (3.5.2) implies a(grI A) = 0 because grI A is
Cohen–Macaulay. Hence (3.5.1) implies a(G) = −2 because G is Cohen–Macaulay.
Now, by [12, (1.2), p. 74], since a(G) < 0 and since G is Cohen–Macaulay, Rs I is
Cohen–Macaulay.

Suppose R is Gorenstein. Then the dualizing module ωS of S is isomorphic
to Ext2R(S,R). However, ∆, α form a regular sequence, so this Ext is equal to
HomR(S,R/

(
∆, α)

)
or, what is the same, to(

(∆, α) : I
)
/(∆, α).

This module is equal to Ĩ. Thus Ĩ ∼= ωS . So S n Ĩ ∼= S n ωS . The latter is a
Gorenstein ring (see [27, (7), p. 419] for instance). Hence G is Gorenstein too,
because ∆′ and α′ form a regular sequence. Finally, by [12, (1.4), p. 75], since
a(G) = −2 and since G is Gorenstein, Rs I is Gorenstein.

Proposition 3.6. Let R be a Noetherian local ring, and B an R-algebra. Assume
that, as an R-module, B is finitely generated and perfect of grade 1. Set Fi :=
FittRi (B). Set I := F1, and assume I 6= R and grade I ≥ 2. Set A := R/F0 and
let ‘ ’ indicate the image in A. Given generators 1, u2, . . . , un of the R-module
B, let ϕ be an n by n matrix with entries in R whose transpose ϕ∗ presents B via
those generators. Set ∆ := detϕ. Let φ be the n by n− 1 matrix consisting of the
last n− 1 columns of ϕ, and set I ′ := In−1(φ).

(1) Then I = I ′; moreover, I is a perfect R-ideal of grade 2, and is presented by
φ. Furthermore, ∆ is regular. In addition, if K denotes the total ring of quotients
of A, then

A ⊂ B ⊂ K, I = A :K B, and B = A :K I.

(2) Assume that gradeF2 ≥ 3. Then I is a complete intersection at each asso-
ciated prime, and ∆ ∈ I(2).
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(3) Assume that B is Gorenstein over R, and modify ϕ to make it symmetric
(see Theorem 2.3). Let φ′ be the n−1 by n−1 matrix obtained by deleting the first
row and column of ϕ, and set α := detφ′ and F ′2 := In−2(φ

′). Then ∆, α form an

R-regular sequence, with respect to which I is self-linked. Moreover, I
i+1

= αI
i
for

every i ≥ 1, and B = α−1I. In addition,

F2 = FittR2 (I) = I2 : (∆) = F ′2.

Proof. Consider (1). First of all, the proof of 2.8 yields, mutatis mutandis, that√
I =

√
I ′. Hence grade I ′ ≥ 2. Therefore, by the Hilbert–Burch theorem, I ′

is a perfect ideal of grade 2, and is presented by φ. Second, ϕ∗ presents B, so
B = Cok(ϕ∗). Moreover, B is perfect of grade 1; hence ϕ∗ is injective and so ∆ is
regular. Finally, consider the proof of 3.1(1). The latter half applies, therefore, to
the present ϕ, and yields B = A :K I ′ and I ′ = A :K B. Hence Proposition 3.1(2)
yields I = I ′. Thus (1) is proved.

Assertion (2) follows from Parts (2′) and (3) of Proposition 3.1, which applies to
the present I and ∆ because of (1).

Consider (3). The first assertions follow, thanks to (1), from Lemma 2.5(3) and
the equivalence of (vi), (iv), and (ii) of Proposition 3.1(4). Now, φ presents I by
(1); hence,

F ′2 ⊂ FittR2 (I) ⊂ F2.

On the other hand, we’re about to show that

F2 ⊂ F 2
1 : (∆) ⊂ F ′2.(3.6.1)

Then the displayed equations asserted in (3) will follow immediately.
As in the proof of Proposition 3.1(2′), the Laplace identity (2.4) yields

F2(∆) ⊂ F 2
1 .

Furthermore, as in the proof of Lemma 2.5(3), the Laplace identity yields

mj,1
1,k∆ = m1

jm
1
k − αmj

k

because ϕ is symmetric. Hence,

I ′2 ⊂ F ′2(∆) + (α)F1.(3.6.2)

Since F1 = I ′ by (1), therefore

F2 ⊂ F 2
1 : (∆) = I ′2 : (∆) ⊂ (F ′2∆, α) : (∆).

Now, it follows easily from the definitions that

(F ′2∆, α) : (∆) ⊂ ((α) : (∆)
)

+ F ′2.

However, since α,∆ form a regular sequence,(
(α) : (∆)

)
= (α).

Together, the last three displays yield that

F2 ⊂ F 2
1 : (∆) ⊂ (α) + F ′2 = F ′2.

Thus (3.6.1) holds, and so (3) is proved.
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Theorem 3.7. Let R be a Noetherian local ring. Given an element ∆ ∈ R, set
A := R/(∆) and let ‘ ’ indicate the image in A, and let K denote the total ring of

quotients of A. Given a finitely generated R-module B, set Fi := FittRi (B). Then
there is a bijective correspondence between the following two sets:

{B | B a perfect R-algebra of grade 1 with gradeF1 = 2 and gradeF2 ≥ 3},
{(∆) ⊂ I | I a perfect R-ideal of grade 2 that is a complete intersection

at each associated prime, and ∆ ∈ I(2) an R-regular element}.
The correspondence associates to B the pair (∆) := F0 and I := F1, and conversely
to (∆) ⊂ I the R-module B := A :K I; moreover, A ⊂ B ⊂ K and I = A :K B.
Finally, B is Gorenstein if and only if I = (∆, α) : I for some α ∈ I; if so, then
B = α−1I.

Proof. The assertions follow immediately from Propositions 3.1 and 3.6(3).

Proposition 3.8. Let R be a Noetherian local ring, and B a Gorenstein R-algebra.
Assume that, as an R-module, B is finitely generated and perfect of grade 1. Set
Fi := FittRi (B). Then either heightF2 ≤ 3 or F2 = R.

In addition, assume gradeF1 ≥ 2 and gradeF2 ≥ 3. Then either F2 is a perfect
R-ideal of grade 3, or it’s the unit ideal.

Finally, let ∆ be a generator of F0, and set I := F1. Then ∆ ∈ I(2), and ∆
defines an isomorphism,

R/F2
∼−→ I(2)/I2.

Proof. Proposition 2.9(1) yields heightF2 ≤ 3. Proposition 3.6(3) yields a symmet-
ric matrix φ′ whose ideal of submaximal minors is equal to F2. Hence F2 is a perfect
R-ideal of grade 3 since gradeF2 ≥ 3; see [24, Thm. 1, p. 116] for instance. Finally,
by Proposition 3.6(2) and (3), the relation ∆ ∈ I(2) holds and the hypotheses of
Proposition 3.3 obtain. So (3.3.3) yields I(2) = I2 + (∆). Hence, multiplication by
∆ induces a surjection R →→ I(2)/I2. Obviously, its kernel is I2 : (∆). However,
the latter is equal to F2 by Proposition 3.6(3).

Corollary 3.9. Let f : X → Y be a finite map of locally Noetherian schemes.
Assume that f is locally of flat dimension 1 and Gorenstein. Then each component
of N3, the scheme of target triple points, has codimension at most 3.

Assume in addition that each component of N3 has codimension 3, that f is
birational onto its image, and that Y satisfies Serre’s condition (S3). Let IN2 denote

the OY -ideal of the scheme of target double-points, and I(2)
N2

its second symbolic

power. Then ON3 is a perfect OY -module, and I(2)
N2
/I2
N2

is an invertible ON3-
module.

Proof. The assertions are local on Y . Furthermore, OY is perfect of grade 1 by
virtue of [22, Lemma 2.3], and if f is birational onto its image and Y satisfies
(S2), then IN2 has grade at least 2 by Lemma 2.11. So the assertions follow from
Proposition 3.8.

4. Normality

In this section, we study the normality of the algebraB treated in Proposition 3.1
and Theorem 3.7. In other words, we investigate when B is equal to the integral
closure A′ of A in its total ring of quotients K.
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Given a Noetherian local ring R, let e(R) denote the multiplicity of R, and call
R a hypersurface ring if R ∼= S/(x), where S is a regular local ring and x is an
S-regular element. Given an ideal I and an element x, set

O(I) := sup{i|I ⊂ mi} and o(x) := O((x)),

where m is the maximal ideal, and call these numbers the orders of I and x.

Proposition 4.1. Let R be a Noetherian local ring satisfying (R2) and (S3). Let
B be an R-algebra that, as an R-module, is finitely generated and perfect of grade
1, and assume that one of the equivalent conditions of Lemma 2.11 is satisfied.
Set Fi := FittRi (B) and I := F1. Set A := R/F0 and let ∆ be a generator of F0.
Consider the following conditions:

(i) e(Ap) = 2 for every associated prime p of I, and ∆ ∈ I(2);

(ii) e(Ap) ≤ 3 for every associated prime p of I, and ∆ ∈ I(2);
(iii) (R/I)p is a hypersurface ring for every associated prime p of I;
(iv) Ip is a complete intersection for every associated prime p of I;

(v) ∆ ∈ I(2).

Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v), and all five conditions are equivalent if B is nor-
mal.

Proof. Localizing at an associated prime of I, we may assume that R is a regular
local ring of dimension 2, that I is primary for the maximal ideal m, and that
I(2) = I2. First notice that e(Ap) ≥ 2, because otherwise A would be regular, and
hence, since the extension A ⊂ B is finite and birational, A would be equal to B,
contrary to the assumption that I, or F1, is m-primary, so unequal to R.

Trivially, (i) implies (ii). Assume (ii). If I ⊂ m2, then ∆ ∈ I2 ⊂ m4 and
so e(A) = o(∆) ≥ 4. It follows that (iii) holds. Clearly, (iii) implies (iv). By
Lemma 3.6(1), the hypotheses of Proposition 3.1 obtain, and its Part (3) yields
(iv)⇒(v).

Finally, suppose that B is normal and that ∆ is in I(2), so in I2. We have to
prove that e(A) = 2. Set I := I/(∆). Then I is equal to the conductor in A of B
by Proposition 3.1(1). So, since B is one-dimensional and normal, I ∼= B. Since
∆ ∈ mI, therefore

I/mI ∼= I/mI ∼= B/mB.

Now, the length of I/mI is equal to the minimal number of generators ν(I) of I,
and the length of B/mB, viewed as an A-module, is equal to the multiplicity of
e(A). Hence

ν(I) = e(A) = o(∆).

On the other hand, the Hilbert–Burch theorem immediately yields the (well-known)
inequality, O(I) ≥ ν(I)− 1. Also, o(∆) ≥ 2O(I) since ∆ ∈ I2. So

o(∆) ≥ 2O(I) ≥ 2ν(I)− 2 ≥ ν(I).

Together, the two preceding displays give ν(I) = 2ν(I) − 2. So ν(I) = 2, and the
proof is complete.

Example 4.2. Proposition 4.1 shows that, in general, the five conditions of Propo-
sition 3.1(2) are not equivalent. Indeed, let R be a power series ring in two variables
over a field (of any characteristic), and let ∆ be any reduced power series of order
o(∆) at least 3, and set A := R/(∆). Let B be the integral closure of A in its total
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ring of quotients. Then, by Lemma 2.11 and Proposition 3.6, the hypotheses of
Proposition 3.1 obtain. However, ∆ /∈ I(2) by virtue of Proposition 4.1, although
B is a ring. For instance, say R := k[[x, y]] and ∆ := y3 − x4; then I = (x2, xy, y2)
because, if B = k[[t]] say, then A = k[[t3, t4]] and I/(∆) = (t6, t7, t8).

Lemma 4.3. Let k be an infinite field, L a field containing k. Let ψ be an s by
r matrix with coefficients in L and with rank s. Then a general k-linear combi-
nation of the columns of ψ does not satisfy any given nonzero polynomial F in
L[X1, . . . , Xs].

Proof. Consider the polynomial G := F ◦ ψ in L[Y1, . . . , Yr]. Obviously, G 6= 0
because rankψ = s and F 6= 0. Let {ai} be a basis for L/k, and say G =

∑
aiGi

where Gi ∈ k[Y1, . . . , Yr]. Then Gi 6= 0 for some i, because G 6= 0. Hence, since k
is infinite, there exists a y ∈ kr such that Gi(y) 6= 0 for some i. On the other hand,
for any such y, clearly G(y) 6= 0. Thus the assertion holds.

Theorem 4.4. Let k be an infinite perfect field, and R a Noetherian local k-algebra
satisfying (R2) and (S3). Let I be a perfect ideal of grade 2 that is a complete inter-
section at each associated prime. Fix generators h1, . . . , hl of I(2), and generators
x1, . . . , xn of the maximal ideal of R. Let f1, . . . , fr be the sequence h1, . . . , hl if
chark = 0, and the sequence x0h1, . . . , xnhl with x0 := 1 if char k is arbitrary. Let
∆ be a general k-linear combination of f1, . . . , fr, and set A := R/(∆). Let K be
the total ring of quotients of A, and set B := A :K I. Then B is a ring, and the
following conditions are equivalent:

(i) e(Ap) = 2 for every associated prime p of I;
(ii) e(Ap) ≤ 3 for every associated prime p of I;
(iii) (R/I)p is a hypersurface ring for every associated prime p of I;
(iv) B is normal.

Furthermore, if any of these conditions hold, then the extension B/A is unramified
in codimension 1.

Proof. First of all, B is a ring by Proposition 3.1(2), and B is a perfect R-module
of grade 1 by Proposition 3.1(1). So we may apply Proposition 4.1. Hence,
(i)⇒(ii)⇒(iii); moreover, (iv)⇒(i) since ∆ ∈ I(2). Finally, assume (iii). We have
to prove that B is normal and B/A is unramified in codimension 1.

By hypothesis, R satisfies (S3). Since B is a perfect R-module of grade 1, it
is locally of codimension 1 by [22, (2.3) and (2.5)]. Hence B satisfies (S2) as an
R-module, and so as a ring. Therefore, it suffices to prove this: for every prime p of
R with p 3 ∆ and with dimRp ≤ 2, the localization Bp is regular and is unramified
over Ap.

If p 6⊃ I, then Ap is regular by a form of Bertini’s theorem since Rp is regular

and since ∆ ∈ I(2) is general. Indeed, in characteristic zero, the required form is
[11, Thm. 4.6, p. 107]; in arbitrary characteristic, the required form follows from
the proof of [11, Thm. 4.1, p. 106] and [11, Thm. 1.7, p. 101]. Thus we may assume
that p ⊃ I. Then p is one of the finitely many associated primes of I.

Localize at p. Then R is a regular local ring of dimension 2, and I 6⊂ m2, where
m is the maximal ideal, because R/I is a hypersurface ring. Completing R, we
may even suppose that R = L[[x, y]], where L is an extension field of k and x, y are
indeterminates with x ∈ I. Then I = (x, ys) for some s ≥ 1. Set I := I/(∆). Let
∆x stand for the partial derivative of ∆ with respect to x, and D for the image of
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∆x in A. We are now going to establish the following equation:

DI = I
2
.(4.4.1)

Since both f1, . . . , fr and x2, xys, y2s generate I2, there exist a 3 by n matrix ϕ
and an n by 3 matrix ψ, both with entries in R, so that x2

xys

y2s

 = ϕ

f1...
fr

 and

f1...
fr

 = ψ

 x2

xys

y2s

 .

Since x2, xys, y2s form a minimal generating set, ϕψ is congruent to the 3 by 3
identity matrix modulo m. Hence ψ has rank 3 modulo m; in other words,

rankL ψ(0) = 3,

where ψ(0) is the matrix of constant terms. By definition,

∆ := a1f1 + · · ·+ arfr,

where (a1, . . . , ar) is a general point in An
k (k). Set

(u, v, w) := (a1, . . . , ar)ψ.

Then the vector of constant terms (u(0), v(0), w(0)) is a general k-linear combina-
tion of the rows of ψ(0); hence, it does not satisfy any given nonzero polynomial
with coefficients in L, by Lemma 4.3 applied to the transpose of ψ(0). On the other
hand,

∆ = ux2 + vxys + wy2s.

Set ũ := 2u+ xux and ṽ := v + xvx + yswx. Then

∆x = ũx+ ṽys.

Since (u(0), v(0), w(0)) satisfies no given nonzero polynomial, w(0) 6= 0 and

(ũ2w − ũvṽ + uṽ2)(0) = 4u2(0)w(0)− u(0)v2(0) 6= 0.

So w and ũ2w − ũvṽ + uṽ2 are units in R. Since w is a unit,

(∆,∆xI) = (ux2 + vxys + wy2s, (ũx+ ṽys)x,w(ũx+ ṽys)ys)

= (ux2 + vxys + wy2s, ũx2 + ṽxys, wũxys − ṽ(ux2 + vxys))

= (ux2 + vxys + wy2s, ũx2 + ṽxys,−ṽux2 + (wũ − ṽv)xys).

However,

det

(
ũ ṽ
−ṽu (wũ − ṽv)

)
= ũ2w − ũvṽ + uṽ2,

and the latter is a unit. Hence

(∆,∆xI) = (∆, x2, xys) = (∆, x2, xys, y2s) = (∆, I2).

So (4.4.1) holds.

Since DI = I
2

by (4.4.1), Proposition 3.1(4) yields that I = DB and that D
is a nonzerodivisor. The latter implies that the extension A/L[[y]] is generically
unramified. Hence A is generically reduced, so reduced since it has no embedded
components. Therefore, the integral closure A′ of A in K is a finitely generated
A-module.
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Let C denote the conductor. Then C contains D, and C = DA′ if and only
if A′/L[[y]] is unramified; this is a matter of standard theory, see [23, Cor. G.12,
p. 389] and [23, Cor. G.14c), p. 391] for example. On the other hand, B ⊆ A′

since B is a finitely generated A-module; hence, C ⊆ I because I = A :K B by
Proposition 3.1(1). Therefore,

C ⊆ I = DB ⊆ DA′ ⊆ C.

So DB = DA′, whence B = A′, and thus B is normal. Moreover,DA′ = C, whence
A′/L[[y]] is unramified, and so A′/A is too. The proof is now complete.

Example 4.5. In Theorem 4.4, it is necessary to assume that ∆ is general. For
example, let k be a field of any characteristic, and R := k[[x, y]] a power series ring.
Set I := (x, y) and ∆ := x2−y5. Then A′ is a power series ring in one variable, say
A′ = k[[t]], and A and B are subrings; namely, A = k[[t5, t2]] and B = k[[t3, t2]].
So I = (t5, t2) and C = (t5, t4). Moreover, D = t5 if chark 6= 2, and D = 0 if
chark = 2.
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