Minimal sets and varieties
Authors:
Keith A. Kearnes, Emil W. Kiss and Matthew A. Valeriote
Journal:
Trans. Amer. Math. Soc. 350 (1998), 1-41
MSC (1991):
Primary 08A05; Secondary 08A40, 08B15
DOI:
https://doi.org/10.1090/S0002-9947-98-01594-3
MathSciNet review:
1348152
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The aim of this paper is twofold. First some machinery is established to reveal the structure of abelian congruences. Then we describe all minimal, locally finite, locally solvable varieties. For locally solvable varieties, this solves problems 9 and 10 of Hobby and McKenzie. We generalize part of this result by proving that all locally finite varieties generated by nilpotent algebras that have a trivial locally strongly solvable subvariety are congruence permutable.
- Joel Berman and Steven Seif, An approach to tame congruence theory via subtraces, Algebra Universalis 30 (1993), no. 4, 479–520. MR 1240569, DOI https://doi.org/10.1007/BF01195379
- Stanley Burris and H. P. Sankappanavar, A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR 648287
- Ralph Freese and Ralph McKenzie, Commutator theory for congruence modular varieties, London Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987. MR 909290
- Steven Givant, Universal Horn classes categorical or free in power, Ann. Math. Logic 15 (1978), no. 1, 1–53. MR 511942, DOI https://doi.org/10.1016/0003-4843%2878%2990025-6
- Steven Givant, A representation theorem for universal Horn classes categorical in power, Ann. Math. Logic 17 (1979), no. 1-2, 91–116. MR 552417, DOI https://doi.org/10.1016/0003-4843%2879%2990022-6
- David Hobby and Ralph McKenzie, The structure of finite algebras, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR 958685
- Keith A. Kearnes, An order-theoretic property of the commutator, Internat. J. Algebra Comput. 3 (1993), no. 4, 491–533. MR 1250248, DOI https://doi.org/10.1142/S0218196793000299
- K. Kearnes. Categorical quasivarieties via Morita equivalence. preprint, 1994.
- K. Kearnes and Á. Szendrei. A characterization of minimal locally finite varieties. Trans. Amer. Math. Soc. 349:1749–1768, 1977.
- E. Kiss. An easy way to minimal algebras. Internat. J. Algebra Comput. 7:55–75, 1977.
- Emil W. Kiss and Péter Pröhle, Problems and results in tame congruence theory. A survey of the ’88 Budapest Workshop, Algebra Universalis 29 (1992), no. 2, 151–171. MR 1157431, DOI https://doi.org/10.1007/BF01190604
- R. McKenzie. Algebraic version of the general Morita theorem for algebraic varieties. preprint.
- Ralph McKenzie, Finite forbidden lattices, Universal algebra and lattice theory (Puebla, 1982) Lecture Notes in Math., vol. 1004, Springer, Berlin, 1983, pp. 176–205. MR 716183, DOI https://doi.org/10.1007/BFb0063438
- Ralph McKenzie, Categorical quasivarieties revisited, Algebra Universalis 19 (1984), no. 3, 273–303. MR 779145, DOI https://doi.org/10.1007/BF01201096
- E. A. Palyutin, Description of categorical quasivarieties, Algebra i Logika 14 (1975), no. 2, 145–185, 240 (Russian). MR 0398821
- Á. Szendrei, Maximal non-affine reducts of simple affine algebras, Algebra Universalis 34 (1995), no. 1, 144–174. MR 1344960, DOI https://doi.org/10.1007/BF01200496
- Ágnes Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 99, Presses de l’Université de Montréal, Montreal, QC, 1986. MR 859550
- Á. Szendrei, A survey on strictly simple algebras and minimal varieties, Universal algebra and quasigroup theory (Jadwisin, 1989) Res. Exp. Math., vol. 19, Heldermann, Berlin, 1992, pp. 209–239. MR 1191235
- Ágnes Szendrei, Strongly abelian minimal varieties, Acta Sci. Math. (Szeged) 59 (1994), no. 1-2, 25–42. MR 1285426
- Walter Taylor, The fine spectrum of a variety, Algebra Universalis 5 (1975), no. 2, 263–303. MR 389716, DOI https://doi.org/10.1007/BF02485261
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 08A05, 08A40, 08B15
Retrieve articles in all journals with MSC (1991): 08A05, 08A40, 08B15
Additional Information
Keith A. Kearnes
Affiliation:
Department of Mathematics, University of Louisville, Louisville, Kentucky 40292
MR Author ID:
99640
Email:
kakear01@homer.louisville.edu
Emil W. Kiss
Affiliation:
Department of Algebra and Number Theory, Eötvös Lóránd University, 1088 Budapest, Múzeum krt. 6–8, Hungary
Email:
ewkiss@cs.elte.hu
Matthew A. Valeriote
Affiliation:
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
Email:
valeriot@mcmaster.ca
Received by editor(s):
October 14, 1994
Received by editor(s) in revised form:
August 18, 1995
Additional Notes:
This research was partially supported by a fellowship from the Alexander von Humboldt Stiftung (to the first author), by the Hungarian National Foundation for Scientific Research, grant no. 1903 (to the second author), and by the NSERC of Canada (third author)
Article copyright:
© Copyright 1998
American Mathematical Society