Rumely’s local global principle for algebraic ${\mathrm P}{\mathcal S}{\mathrm C}$ fields over rings
HTML articles powered by AMS MathViewer
- by Moshe Jarden and Aharon Razon
- Trans. Amer. Math. Soc. 350 (1998), 55-85
- DOI: https://doi.org/10.1090/S0002-9947-98-01630-4
- PDF | Request permission
Abstract:
Let $\mathcal {S}$ be a finite set of rational primes. We denote the maximal Galois extension of $\mathbb {Q}$ in which all $p\in \mathcal {S}$ totally decompose by $N$. We also denote the fixed field in $N$ of $e$ elements $\sigma _{1},\ldots , \sigma _{e}$ in the absolute Galois group $G( \mathbb {Q})$ of $\mathbb {Q}$ by $N( {\boldsymbol \sigma })$. We denote the ring of integers of a given algebraic extension $M$ of $\mathbb {Q}$ by $\mathbb {Z}_{M}$. We also denote the set of all valuations of $M$ (resp., which lie over $S$) by $\mathcal {V}_{M}$ (resp., $\mathcal {S}_{M}$). If $v\in \mathcal {V}_{M}$, then $O_{M,v}$ denotes the ring of integers of a Henselization of $M$ with respect to $v$. We prove that for almost all ${\boldsymbol \sigma }\in G( \mathbb {Q})^{e}$, the field $M=N( {\boldsymbol \sigma })$ satisfies the following local global principle: Let $V$ be an affine absolutely irreducible variety defined over $M$. Suppose that $V(O_{M,v})\not =\varnothing$ for each $v\in \mathcal {V}_{M}\backslash \mathcal {S}_{M}$ and $V_{\mathrm {sim}}(O_{M,v})\not =\varnothing$ for each $v\in \mathcal {S}_{M}$. Then $V(O_{M})\not =\varnothing$. We also prove two approximation theorems for $M$.References
- David C. Cantor and Peter Roquette, On Diophantine equations over the ring of all algebraic integers, J. Number Theory 18 (1984), no. 1, 1–26. MR 734433, DOI 10.1016/0022-314X(84)90038-6
- $\{$Collection of articles dedicated to Andrzej Mostowski on the occasion of his sixtieth birthday. VI$\}$, Państwowe Wydawnictwo Naukowe, Warsaw, 1974. Fund. Math. 82 (1974/75), no. 2. MR 0344050
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Martin Davis, Yuri Matijasevič, and Julia Robinson, Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 323–378. (loose erratum). MR 0432534
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- B. Green, F. Pop, and P. Roquette, On Rumely’s local-global principle, Jahresbericht der Deutsche Mathematickervereinigung 97 (1995), 43–74.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157, DOI 10.1007/978-1-4757-3849-0
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Moshe Jarden, Elementary statements over large algebraic fields, Trans. Amer. Math. Soc. 164 (1972), 67–91. MR 302651, DOI 10.1090/S0002-9947-1972-0302651-9
- M. Jarden, The Skolem problem over the rings of integers of large algebraic fields, manuscript, Tel Aviv, 1989.
- Moshe Jarden, Intersections of local algebraic extensions of a Hilbertian field, Generators and relations in groups and geometries (Lucca, 1990) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 333, Kluwer Acad. Publ., Dordrecht, 1991, pp. 343–405. MR 1206921, DOI 10.1007/978-94-011-3382-1_{1}3
- Moshe Jarden, The inverse Galois problem over formal power series fields, Israel J. Math. 85 (1994), no. 1-3, 263–275. MR 1264347, DOI 10.1007/BF02758644
- Moshe Jarden, Algebraic realization of $p$-adically projective groups, Compositio Math. 79 (1991), no. 1, 21–62. MR 1112279
- Moshe Jarden and Peter Roquette, The Nullstellensatz over ${\mathfrak {p}}$-adically closed fields, J. Math. Soc. Japan 32 (1980), no. 3, 425–460. MR 575400, DOI 10.2969/jmsj/03230425
- Moshe Jarden and Aharon Razon, Pseudo algebraically closed fields over rings, Israel J. Math. 86 (1994), no. 1-3, 25–59. MR 1276130, DOI 10.1007/BF02773673
- M. Jarden and A. Razon, Skolem density problems over algebraic P$\mathcal {S}$C fields over rings, Nieuw Archief Wisskunde 13 (1995), 381–399.
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- Laurent Moret-Bailly, Points entiers des variétés arithmétiques, Séminaire de Théorie des Nombres, Paris 1985–86, Progr. Math., vol. 71, Birkhäuser Boston, Boston, MA, 1987, pp. 147–154 (French). MR 1017909, DOI 10.1007/978-1-4757-4267-1_{1}0
- Laurent Moret-Bailly, Groupes de Picard et problèmes de Skolem. I, II, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 161–179, 181–194 (French). MR 1005158, DOI 10.24033/asens.1581
- Laurent Moret-Bailly, Groupes de Picard et problèmes de Skolem. I, II, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 2, 161–179, 181–194 (French). MR 1005158, DOI 10.24033/asens.1581
- David Mumford, The red book of varieties and schemes, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1988. MR 971985, DOI 10.1007/978-3-662-21581-4
- F. Pop, Fields of totally $\Sigma$-adic numbers, manuscript, Heidelberg, 1992.
- A. Razon, Primitive recursive decidability for large rings of algebraic integers, Ph.D Thesis, Tel Aviv, 1995.
- Peter Roquette, Reciprocity in valued function fields, J. Reine Angew. Math. 375/376 (1987), 238–258. MR 882299, DOI 10.1515/crll.1987.375-376.238
- P. Roquette, Rumely’s local global principle, Notes from a meeting in Oberwolfach on model theory, 1990.
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Robert S. Rumely, Arithmetic over the ring of all algebraic integers, J. Reine Angew. Math. 368 (1986), 127–133. MR 850618, DOI 10.1515/crll.1986.368.127
- Robert S. Rumely, Capacity theory on algebraic curves, Lecture Notes in Mathematics, vol. 1378, Springer-Verlag, Berlin, 1989. MR 1009368, DOI 10.1007/BFb0084525
- I. R. Shafarevich, Basic algebraic geometry, Springer Study Edition, Springer-Verlag, Berlin-New York, 1977. Translated from the Russian by K. A. Hirsch; Revised printing of Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974. MR 0447223
- Volker Weispfenning, Quantifier elimination and decision procedures for valued fields, Models and sets (Aachen, 1983) Lecture Notes in Math., vol. 1103, Springer, Berlin, 1984, pp. 419–472. MR 775704, DOI 10.1007/BFb0099397
Bibliographic Information
- Moshe Jarden
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- Email: jarden@math.tau.ac.il
- Aharon Razon
- Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
- MR Author ID: 266735
- Email: razon@math.tau.ac.il
- Received by editor(s): June 14, 1994
- Received by editor(s) in revised form: August 1, 1995
- Additional Notes: This research was supported by The Israel Science Foundation administered by The Israel Academy of Sciences and Humanities.
The authors thank Joachim Schmid for useful remarks. - © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 55-85
- MSC (1991): Primary 11R23
- DOI: https://doi.org/10.1090/S0002-9947-98-01630-4
- MathSciNet review: 1355075
Dedicated: To Peter Roquette with gratitude