Widths of Subgroups
HTML articles powered by AMS MathViewer
- by Rita Gitik, Mahan Mitra, Eliyahu Rips and Michah Sageev
- Trans. Amer. Math. Soc. 350 (1998), 321-329
- DOI: https://doi.org/10.1090/S0002-9947-98-01792-9
- PDF | Request permission
Abstract:
We say that the width of an infinite subgroup $H$ in $G$ is $n$ if there exists a collection of $n$ essentially distinct conjugates of $H$ such that the intersection of any two elements of the collection is infinite and $n$ is maximal possible. We define the width of a finite subgroup to be $0$. We prove that a quasiconvex subgroup of a negatively curved group has finite width. It follows that geometrically finite surfaces in closed hyperbolic $3$-manifolds satisfy the $k$-plane property for some $k$.References
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- R. Gitik and E. Rips, Heights of Subgroups, MSRI Preprint 027-95.
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Joel Hass and Peter Scott, Homotopy equivalence and homeomorphism of $3$-manifolds, Topology 31 (1992), no. 3, 493–517. MR 1174254, DOI 10.1016/0040-9383(92)90046-K
- I. Kapovich and H. Short, Some Remarks on Quasiconvexity, preprint.
- M. Mitra, Immersed Incompressible Surfaces in Hyperbolic $3$-Manifolds, in preparation.
- H. Rubinstein and M. Sageev, Intersection Patterns of Immersed Incompressible Surfaces, in preparation.
- Peter Scott, There are no fake Seifert fibre spaces with infinite $\pi _{1}$, Ann. of Math. (2) 117 (1983), no. 1, 35–70. MR 683801, DOI 10.2307/2006970
- Hamish Short, Quasiconvexity and a theorem of Howson’s, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp. 168–176. MR 1170365
- Perry Susskind and Gadde A. Swarup, Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114 (1992), no. 2, 233–250. MR 1156565, DOI 10.2307/2374703
- E. Swenson, Limit Sets in the Boundary of Negatively Curved Groups, preprint.
Bibliographic Information
- Rita Gitik
- Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
- Email: ritagtk@math.lsa.umich.edu
- Mahan Mitra
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720
- Email: mitra@math.berkeley.edu
- Eliyahu Rips
- Affiliation: Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem, 91904, Israel
- Email: rips@sunset.huji.ac.il
- Michah Sageev
- Affiliation: Department of Mathematics, University of Southampton, Southampton, England
- MR Author ID: 366122
- Email: mes@maths.soton.ac.uk
- Received by editor(s): September 19, 1995
- Received by editor(s) in revised form: March 25, 1996
- Additional Notes: Research of the first author supported in part by NSF grant DMS 9022140.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 321-329
- MSC (1991): Primary 20F32, 57M07
- DOI: https://doi.org/10.1090/S0002-9947-98-01792-9
- MathSciNet review: 1389776