Double Walsh series with coefficients of bounded variation of higher order
Authors:
Chang-Pao Chen and Ching-Tang Wu
Journal:
Trans. Amer. Math. Soc. 350 (1998), 395-417
MSC (1991):
Primary 42C10
DOI:
https://doi.org/10.1090/S0002-9947-98-01899-6
MathSciNet review:
1407697
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $D_{j}^{k}(x)$ denote the Cesàro sums of order $k$ of the Walsh functions. The estimates of $D_{j}^{k}(x)$ given by Fine back in 1949 are extended to the case $k>2$. As a corollary, the following properties are established for the rectangular partial sums of those double Walsh series whose coefficients satisfy conditions of bounded variation of order $(p,0), (0,p)$, and $(p,p)$ for some $p\ge 1$: (a) regular convergence; (b) uniform convergence; (c) $L^{r}$-integrability and $L^{r}$-metric convergence for $0<r<1/p$; and (d) Parseval’s formula. Extensions to those with coefficients of generalized bounded variation are also derived.
- L. A. Balašov, Series with respect to the Walsh system with monotone coefficients., Sibirsk. Mat. Ž. 12 (1971), 25–39 (Russian). MR 0284758
- Chang P’ao Ch’ên, Pointwise convergence of trigonometric series, J. Austral. Math. Soc. Ser. A 43 (1987), no. 3, 291–300. MR 904390
- Chang P’ao Ch’ên, Integrability and $L$-convergence of multiple trigonometric series, Bull. Austral. Math. Soc. 49 (1994), no. 2, 333–339. MR 1265369, DOI https://doi.org/10.1017/S0004972700016397
- Chang P’ao Ch’ên, Weighted integrability and $L^1$-convergence of multiple trigonometric series, Studia Math. 108 (1994), no. 2, 177–190. MR 1259503, DOI https://doi.org/10.4064/sm-108-2-177-190
- ---, Integrability of multiple Walsh series and Parseval’s formula, Analysis Math. 22 (1996), 99–112.
- ---, Integrability, mean convergence, and Parseval’s formula for double Walsh series, preprint.
- Chang P’ao Ch’ên and Po Hsun Hsieh, Pointwise convergence of double trigonometric series, J. Math. Anal. Appl. 172 (1993), no. 2, 582–601. With a note by Ferenc Móricz. MR 1201007, DOI https://doi.org/10.1006/jmaa.1993.1045
- Chang P’ao Ch’ên, Hui Chuan Wu, and Ferenc Móricz, Pointwise convergence of multiple trigonometric series, J. Math. Anal. Appl. 185 (1994), no. 3, 629–646. MR 1288232, DOI https://doi.org/10.1006/jmaa.1994.1273
- N, J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
- G. H. Hardy, On the convergence of certain multiple series, Proc. Cambridge Phil. Soc. 19 (1916-1919), 86-95.
- G. Morgenthaler, Walsh-Fourier series, Trans. Amer. Math. Soc. 84 (1957), 472-507.
- F. Móricz, Walsh-Fourier series with coefficients of generalized bounded variation, J. Austral. Math. Soc. Ser. A 47 (1989), no. 3, 458–465. MR 1018974
- F. Móricz, Double Walsh series with coefficients of bounded variation, Z. Anal. Anwendungen 10 (1991), no. 1, 3–10 (English, with German and Russian summaries). MR 1155351, DOI https://doi.org/10.4171/ZAA/426
- Ferenc Móricz, Pointwise convergence of double Walsh series, Analysis 12 (1992), no. 1-2, 121–137. MR 1159374, DOI https://doi.org/10.1524/anly.1992.12.12.121
- Ferenc Móricz and Ferenc Schipp, On the integrability and $L^1$-convergence of Walsh series with coefficients of bounded variation, J. Math. Anal. Appl. 146 (1990), no. 1, 99–109. MR 1041204, DOI https://doi.org/10.1016/0022-247X%2890%2990335-D
- F. Móricz and F. Schipp, On the integrability and $L^1$-convergence of double Walsh series, Acta Math. Hungar. 57 (1991), no. 3-4, 371–380. MR 1139331, DOI https://doi.org/10.1007/BF01903688
- F. Móricz, F. Schipp, and W. R. Wade, On the integrability of double Walsh series with special coefficients, Michigan Math. J. 37 (1990), no. 2, 191–201. MR 1058391, DOI https://doi.org/10.1307/mmj/1029004125
- F. Móricz, F. Schipp, and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), no. 1, 131–140. MR 1030510, DOI https://doi.org/10.1090/S0002-9947-1992-1030510-8
- A. I. Rubinšteĭn, The $A$-integral and series with respect to a Walsh system, Uspehi Mat. Nauk 18 (1963), no. 3 (111), 191–197 (Russian). MR 0154058
- A. A. Šneider, On series with respect to Walsh functions with monotone coefficients, Izv. Akad. Nauk. SSSR, Ser. Mat. 12 (1948), 179-192 (in Russian)
- F. Schipp, W. R. Wade, and P. Simon, Walsh series, Adam Hilger, Ltd., Bristol, 1990. An introduction to dyadic harmonic analysis; With the collaboration of J. Pál. MR 1117682
- F. Weisz, Cesàro summability of two-parameter Walsh-Fourier series, J. Approx. Theory 88 (1997), 168–192.
- Ferenc Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2169–2181. MR 1340180, DOI https://doi.org/10.1090/S0002-9947-96-01569-3
- S. Yano, On Walsh-Fourier series, Tôhoku Math. J. 3 (1951), 223-242.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42C10
Retrieve articles in all journals with MSC (1991): 42C10
Additional Information
Chang-Pao Chen
Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
Email:
cpchen@math.nthu.edu.tw
Ching-Tang Wu
Affiliation:
Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
MR Author ID:
1161278
Received by editor(s):
May 17, 1995
Received by editor(s) in revised form:
July 30, 1996
Additional Notes:
The first author’s research is supported by National Science Council, Taipei, R.O.C. under Grant #NSC 84-2121-M-007-026.
Article copyright:
© Copyright 1998
American Mathematical Society