Lévy processes in semisimple Lie groups and stability of stochastic flows
HTML articles powered by AMS MathViewer
- by Ming Liao
- Trans. Amer. Math. Soc. 350 (1998), 501-522
- DOI: https://doi.org/10.1090/S0002-9947-98-01730-9
- PDF | Request permission
Abstract:
We study the asymptotic stability of stochastic flows on compact spaces induced by Levy processes in semisimple Lie groups. It is shown that the Lyapunov exponents can be determined naturally in terms of root structure of the Lie group and there is an open subset whose complement has a positive codimension such that, after a random rotation, each of its connected components is shrunk to a single moving point exponentially under the flow.References
- David Applebaum and Hiroshi Kunita, Lévy flows on manifolds and Lévy processes on Lie groups, J. Math. Kyoto Univ. 33 (1993), no. 4, 1103–1123. MR 1251218, DOI 10.1215/kjm/1250519132
- Peter H. Baxendale, Asymptotic behaviour of stochastic flows of diffeomorphisms: two case studies, Probab. Theory Relat. Fields 73 (1986), no. 1, 51–85. MR 849065, DOI 10.1007/BF01845993
- Andrew Carverhill, Flows of stochastic dynamical systems: ergodic theory, Stochastics 14 (1985), no. 4, 273–317. MR 805125, DOI 10.1080/17442508508833343
- David Elworthy, Geometric aspects of diffusions on manifolds, École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Math., vol. 1362, Springer, Berlin, 1988, pp. 277–425. MR 983375, DOI 10.1007/BFb0086183
- Y. Guivarc’h and A. Raugi, Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 187–242 (French). MR 779457, DOI 10.1007/BF02450281
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, 2nd ed., North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. MR 1011252
- Ming Liao, Stochastic flows on the boundaries of Lie groups, Stochastics Stochastics Rep. 39 (1992), no. 4, 213–237. MR 1275123, DOI 10.1080/17442509208833776
- Ming Liao, Stochastic flows on the boundaries of $\textrm {SL}(n,\textbf {R})$, Probab. Theory Related Fields 96 (1993), no. 2, 261–281. MR 1227035, DOI 10.1007/BF01192136
- Ming Liao, Invariant diffusion processes in Lie groups and stochastic flows, Stochastic analysis (Ithaca, NY, 1993) Proc. Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI, 1995, pp. 575–591. MR 1335499, DOI 10.1090/pspum/057/1335499
- Marie-Paule Malliavin and Paul Malliavin, Factorisations et lois limites de la diffusion horizontale au-dessus d’un espace riemannien symétrique, Théorie du potentiel et analyse harmonique (Journées Soc. Math. France, Inst. Recherche Math. Avancée, Strasbourg, 1973) Lecture Notes in Math., Vol. 404, Springer, Berlin, 1974, pp. 164–217 (French). MR 0359023
Bibliographic Information
- Ming Liao
- Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama 36849
- MR Author ID: 214970
- Email: liaomin@mail.auburn.edu
- Received by editor(s): June 19, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 501-522
- MSC (1991): Primary 58G32; Secondary 60H10
- DOI: https://doi.org/10.1090/S0002-9947-98-01730-9
- MathSciNet review: 1373644