Comparison theorems and orbit counting in hyperbolic geometry
HTML articles powered by AMS MathViewer
- by Mark Pollicott and Richard Sharp
- Trans. Amer. Math. Soc. 350 (1998), 473-499
- DOI: https://doi.org/10.1090/S0002-9947-98-01756-5
- PDF | Request permission
Abstract:
In this article we address an interesting problem in hyperbolic geometry. This is the problem of comparing different quantities associated to the fundamental group of a hyperbolic manifold (e.g. word length, displacement in the universal cover, etc.) asymptotically. Our method involves a mixture of ideas from both “thermodynamic” ergodic theory and the automaton associated to strongly Markov groups.References
- Roy Adler and Leopold Flatto, Geodesic flows, interval maps, and symbolic dynamics, Bull. Amer. Math. Soc. (N.S.) 25 (1991), no. 2, 229–334. MR 1085823, DOI 10.1090/S0273-0979-1991-16076-3
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- L. Bers, Uniformization. Moduli and Kleinian groups, Uspehi Mat. Nauk 28 (1973), no. 4(172), 153–198 (Russian). Translated from the English (Bull. London Math. Soc. 4 (1972), 257–300) by A. Ju. Geronimus. MR 0385085
- M. Bourdon, Actions quasi-convexes d’un groupe hyperbolique, flot géodésique, PhD thesis (Orsay) 1993.
- James W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), no. 2, 123–148. MR 758901, DOI 10.1007/BF00146825
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648, DOI 10.1007/978-1-4684-9167-8
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Steven P. Lalley, Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits, Acta Math. 163 (1989), no. 1-2, 1–55. MR 1007619, DOI 10.1007/BF02392732
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI 10.1016/0022-1236(87)90097-8
- J. Milnor, A note on curvature and fundamental group, J. Differential Geometry 2 (1968), 1–7. MR 232311, DOI 10.4310/jdg/1214501132
- Roger D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473–478. MR 264434
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- S. J. Patterson, On a lattice-point problem in hyperbolic space and related questions in spectral theory, Ark. Mat. 26 (1988), no. 1, 167–172. MR 948288, DOI 10.1007/BF02386116
- Mark Pollicott and Richard Sharp, Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature, Invent. Math. 117 (1994), no. 2, 275–302. MR 1273266, DOI 10.1007/BF01232242
- David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655
- E. Seneta, Non-negative matrices, Halsted Press [John Wiley & Sons], New York, 1973. An introduction to theory and applications. MR 0389944
- Caroline Series, The infinite word problem and limit sets in Fuchsian groups, Ergodic Theory Dynam. Systems 1 (1981), no. 3, 337–360 (1982). MR 662473, DOI 10.1017/s0143385700001280
- Caroline Series, Geometrical Markov coding of geodesics on surfaces of constant negative curvature, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 601–625. MR 873435, DOI 10.1017/S0143385700003722
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
Bibliographic Information
- Mark Pollicott
- Affiliation: Department of Mathematics, University of Warwick, Coventry, CV4 7AL, U.K.
- Address at time of publication: Department of Mathematics, University of Manchester, Oxford Road, Man- chester, M13 9PL, U.K.
- MR Author ID: 140805
- Email: mp@ma.man.ac.uk
- Richard Sharp
- Affiliation: Mathematical Institute, 24-29 St. Giles, Oxford, OX1 3LB, U.K.
- Address at time of publication: Department of Mathematics, University of Manchester, Oxford Road, Man- chester, M13 9PL, U.K.
- MR Author ID: 317352
- Email: sharp@ma.man.ac.uk
- Received by editor(s): May 23, 1995
- Additional Notes: The first author was supported by The Royal Society through a University Research Fellowship. The second author was supported by the UK SERC under grant number GR/G51930 held at Queen Mary and Westfield College.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 473-499
- MSC (1991): Primary 20F32, 22E40, 58E40; Secondary 11F72, 20F10, 58F20
- DOI: https://doi.org/10.1090/S0002-9947-98-01756-5
- MathSciNet review: 1376553