Relativity of the spectrum and

discrete groups on hyperbolic spaces

Author:
N. Mandouvalos

Journal:
Trans. Amer. Math. Soc. **350** (1998), 559-569

MSC (1991):
Primary 11F72

DOI:
https://doi.org/10.1090/S0002-9947-98-01803-0

MathSciNet review:
1389787

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a simple proof of the analytic continuation of the resolvent kernel for a convex cocompact Kleinian group.

**1.**T. Kubota,*Elementary theory of Eisenstein series*, Kodansha, Tokyo, New York, 1973. MR**55:2759****2.**N. Mandouvalos,*The theory of Eisenstein series for Kleinian groups*, Contemporary Mathematics, V. 53, (1986), 357-370. MR**88f:11046****3.**-,*Spectral theory and Eisenstein series for Kleinian groups*, Proc. London Math. Soc. (3)**57**(1988), 209-238. MR**89h:58201****4.**-,*Scattering operator, Eisenstein series, inner product formula and ``Maass-Selberg'' relations for Kleinian groups*, Memoirs Amer. Math. Society, V. 78, No. 400, (1989), 1-87. MR**90c:11036****5.**R. R. Mazzeo and R. B. Melrose,*Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature*, J. Funct. Anal.**75**(1987), 260-310. MR**89c:58133****6.**S. J. Patterson,*The limit set of a Fuchsian group*, Acta Math.**136**(1976), 241-273. MR**56:8841****7.**-,*The Selberg zeta function of a Kleinian group*, Number Theory, Trace Formulas and Discrete Groups, Symposium in Honor of Atle Selberg, Oslo, Norway, July 14-21, Academic Press, 1987, 409-441. MR**91c:11029****8.**P. A. Perry,*The Laplace operator on a hyperbolic manifold, II. Eisenstein series and the scattering matrix*, J. Reine Angew. Math.**398**(1989), 67-91. MR**90g:58138****9.**A. Selberg,*Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series*, J. Indian Math. Soc.**20**(1956), 47-87. MR**19:531g****10.**D. Sullivan,*The density at infinity of a discrete group of hyperbolic motions*, Publ. Math. IHES**50**(1979), 171-202. MR**81b:58031****11.**P. Tukia,*The Hausdorff dimension of the limit set of a geometrically finite Kleinian group*, Acta Math.**152**(1984), 125-140. MR**85m:30031**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
11F72

Retrieve articles in all journals with MSC (1991): 11F72

Additional Information

**N. Mandouvalos**

Affiliation:
Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece

DOI:
https://doi.org/10.1090/S0002-9947-98-01803-0

Received by editor(s):
August 1, 1995

Received by editor(s) in revised form:
December 28, 1995

Article copyright:
© Copyright 1998
American Mathematical Society