## Relativity of the spectrum and discrete groups on hyperbolic spaces

HTML articles powered by AMS MathViewer

- by N. Mandouvalos PDF
- Trans. Amer. Math. Soc.
**350**(1998), 559-569 Request permission

## Abstract:

We give a simple proof of the analytic continuation of the resolvent kernel for a convex cocompact Kleinian group.## References

- Tomio Kubota,
*Elementary theory of Eisenstein series*, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR**0429749** - N. Mandouvalos,
*The theory of Eisenstein series for Kleinian groups*, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 357–370. MR**853566**, DOI 10.1090/conm/053/853566 - N. Mandouvalos,
*Spectral theory and Eisenstein series for Kleinian groups*, Proc. London Math. Soc. (3)**57**(1988), no. 2, 209–238. MR**950590**, DOI 10.1112/plms/s3-57.2.209 - Nikolaos Mandouvalos,
*Scattering operator, Eisenstein series, inner product formula and “Maass-Selberg” relations for Kleinian groups*, Mem. Amer. Math. Soc.**78**(1989), no. 400, iv+87. MR**989747**, DOI 10.1090/memo/0400 - Rafe R. Mazzeo and Richard B. Melrose,
*Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature*, J. Funct. Anal.**75**(1987), no. 2, 260–310. MR**916753**, DOI 10.1016/0022-1236(87)90097-8 - S. J. Patterson,
*The limit set of a Fuchsian group*, Acta Math.**136**(1976), no. 3-4, 241–273. MR**450547**, DOI 10.1007/BF02392046 - S. J. Patterson,
*The Selberg zeta-function of a Kleinian group*, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 409–441. MR**993330** - Peter A. Perry,
*The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix*, J. Reine Angew. Math.**398**(1989), 67–91. MR**998472**, DOI 10.1515/crll.1989.398.67 - Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771–782. MR**19**, DOI 10.2307/2371335 - Dennis Sullivan,
*The density at infinity of a discrete group of hyperbolic motions*, Inst. Hautes Études Sci. Publ. Math.**50**(1979), 171–202. MR**556586**, DOI 10.1007/BF02684773 - Pekka Tukia,
*The Hausdorff dimension of the limit set of a geometrically finite Kleinian group*, Acta Math.**152**(1984), no. 1-2, 127–140. MR**736215**, DOI 10.1007/BF02392194

## Additional Information

**N. Mandouvalos**- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
- Received by editor(s): August 1, 1995
- Received by editor(s) in revised form: December 28, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 559-569 - MSC (1991): Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-98-01803-0
- MathSciNet review: 1389787