Relativity of the spectrum and discrete groups on hyperbolic spaces
HTML articles powered by AMS MathViewer
- by N. Mandouvalos
- Trans. Amer. Math. Soc. 350 (1998), 559-569
- DOI: https://doi.org/10.1090/S0002-9947-98-01803-0
- PDF | Request permission
Abstract:
We give a simple proof of the analytic continuation of the resolvent kernel for a convex cocompact Kleinian group.References
- Tomio Kubota, Elementary theory of Eisenstein series, Kodansha, Ltd., Tokyo; Halsted Press [John Wiley & Sons, Inc.], New York-London-Sydney, 1973. MR 0429749
- N. Mandouvalos, The theory of Eisenstein series for Kleinian groups, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 357–370. MR 853566, DOI 10.1090/conm/053/853566
- N. Mandouvalos, Spectral theory and Eisenstein series for Kleinian groups, Proc. London Math. Soc. (3) 57 (1988), no. 2, 209–238. MR 950590, DOI 10.1112/plms/s3-57.2.209
- Nikolaos Mandouvalos, Scattering operator, Eisenstein series, inner product formula and “Maass-Selberg” relations for Kleinian groups, Mem. Amer. Math. Soc. 78 (1989), no. 400, iv+87. MR 989747, DOI 10.1090/memo/0400
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI 10.1016/0022-1236(87)90097-8
- S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), no. 3-4, 241–273. MR 450547, DOI 10.1007/BF02392046
- S. J. Patterson, The Selberg zeta-function of a Kleinian group, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 409–441. MR 993330
- Peter A. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. Reine Angew. Math. 398 (1989), 67–91. MR 998472, DOI 10.1515/crll.1989.398.67
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
- Pekka Tukia, The Hausdorff dimension of the limit set of a geometrically finite Kleinian group, Acta Math. 152 (1984), no. 1-2, 127–140. MR 736215, DOI 10.1007/BF02392194
Bibliographic Information
- N. Mandouvalos
- Affiliation: Department of Mathematics, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece
- Received by editor(s): August 1, 1995
- Received by editor(s) in revised form: December 28, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 559-569
- MSC (1991): Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9947-98-01803-0
- MathSciNet review: 1389787