Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials

Author:
Feliks Przytycki

Journal:
Trans. Amer. Math. Soc. **350** (1998), 717-742

MSC (1991):
Primary 58F23

DOI:
https://doi.org/10.1090/S0002-9947-98-01890-X

MathSciNet review:
1407501

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that for every rational map on the Riemann sphere $f:\overline {\mathbb {C}} \to \overline {\mathbb {C}}$, if for every $f$-critical point $c\in J$ whose forward trajectory does not contain any other critical point, the growth of $|(f^{n})’(f(c))|$ is at least of order $\exp Q \sqrt n$ for an appropriate constant $Q$ as $n\to \infty$, then $\operatorname {HD}_{\operatorname {ess}} (J)=\alpha _{0}=\operatorname {HD} (J)$. Here $\operatorname {HD}_{\operatorname {ess}} (J)$ is the so-called essential, dynamical or hyperbolic dimension, $\operatorname {HD} (J)$ is Hausdorff dimension of $J$ and $\alpha _{0}$ is the minimal exponent for conformal measures on $J$. If it is assumed additionally that there are no periodic parabolic points then the Minkowski dimension (other names: box dimension, limit capacity) of $J$ also coincides with $\operatorname {HD}(J)$. We prove ergodicity of every $\alpha$-conformal measure on $J$ assuming $f$ has one critical point $c\in J$, no parabolic, and $\sum _{n=0}^{\infty }|(f^{n})’(f(c))|^{-1} <\infty$. Finally for every $\alpha$-conformal measure $\mu$ on $J$ (satisfying an additional assumption), assuming an exponential growth of $|(f^{n})’(f(c))|$, we prove the existence of a probability absolutely continuous with respect to $\mu$, $f$-invariant measure. In the Appendix we prove $\operatorname {HD}_{\operatorname {ess}} (J)=\operatorname {HD} (J)$ also for every non-renormalizable quadratic polynomial $z\mapsto z^{2}+c$ with $c$ not in the main cardioid in the Mandelbrot set.

- M. Bloch and M. Lyubich,
*Measurable dynamics of S-unimodal maps of the interval*, Ann. Sci. Éc. Norm. Sup. (4)**24**(1991), 545–573. - P. Collet and J.-P. Eckmann,
*Positive Liapunov exponents and absolute continuity for maps of the interval*, Ergodic Theory Dynam. Systems**3**(1983), no. 1, 13–46. MR**743027**, DOI https://doi.org/10.1017/S0143385700001802 - Pierre Collet and Jean-Pierre Eckmann,
*Iterated maps on the interval as dynamical systems*, Progress in Physics, vol. 1, Birkhäuser, Boston, Mass., 1980. MR**613981** - Manfred Denker, Feliks Przytycki, and Mariusz Urbański,
*On the transfer operator for rational functions on the Riemann sphere*, Ergodic Theory Dynam. Systems**16**(1996), no. 2, 255–266. MR**1389624**, DOI https://doi.org/10.1017/S0143385700008804 - M. Denker and M. Urbański,
*On Sullivan’s conformal measures for rational maps of the Riemann sphere*, Nonlinearity**4**(1991), 365–384. - M. Denker and M. Urbański,
*The capacity of parabolic Julia sets*, Math. Z.**211**(1992), no. 1, 73–86. MR**1179780**, DOI https://doi.org/10.1007/BF02571418 - Miguel de Guzmán,
*Differentiation of integrals in $R^{n}$*, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR**0457661** - John Guckenheimer,
*Sensitive dependence to initial conditions for one-dimensional maps*, Comm. Math. Phys.**70**(1979), no. 2, 133–160. MR**553966** - John Guckenheimer and Stewart Johnson,
*Distortion of $S$-unimodal maps*, Ann. of Math. (2)**132**(1990), no. 1, 71–130. MR**1059936**, DOI https://doi.org/10.2307/1971501 - J. Graczyk and G. Świa̧tek,
*Induced expansion for quadratic polynomials*, Ann. Sci. Éc. Norm. Sup. (4)**29**(1996), 399–482. - J. Graczyk and G. Świa̧tek,
*Holomorphic box mappings*, Preprint IHES/M/1996/76. - Einar Hille,
*Analytic function theory. Vol. II*, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR**0201608** - A. Katok,
*Lyapunov exponents, entropy and periodic orbits for diffeomorphisms*, Inst. Hautes Études Sci. Publ. Math.**51**(1980), 137–173. MR**573822** - M. Lyubich,
*Geometry of quadratic polynomials: moduli, rigidity and local connectivity*, Preprint SUNY at Stony Brook, IMS 1993/9. - Mikhail Lyubich and John Milnor,
*The Fibonacci unimodal map*, J. Amer. Math. Soc.**6**(1993), no. 2, 425–457. MR**1182670**, DOI https://doi.org/10.1090/S0894-0347-1993-1182670-0 - Ricardo Mañé,
*On a theorem of Fatou*, Bol. Soc. Brasil. Mat. (N.S.)**24**(1993), no. 1, 1–11. MR**1224298**, DOI https://doi.org/10.1007/BF01231694 - Tomasz Nowicki,
*Some dynamical properties of $S$-unimodal maps*, Fund. Math.**142**(1993), no. 1, 45–57. MR**1207470**, DOI https://doi.org/10.4064/fm-142-1-45-57 - Curtis T. McMullen,
*Complex dynamics and renormalization*, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR**1312365** - Tomasz Nowicki and Sebastian van Strien,
*Invariant measures exist under a summability condition for unimodal maps*, Invent. Math.**105**(1991), no. 1, 123–136. MR**1109621**, DOI https://doi.org/10.1007/BF01232258 - E. Prado,
*Ergodicity of conformal measures for quadratic polynomials*, Manuscript, May 23, 1994. - Feliks Przytycki,
*Lyapunov characteristic exponents are nonnegative*, Proc. Amer. Math. Soc.**119**(1993), no. 1, 309–317. MR**1186141**, DOI https://doi.org/10.1090/S0002-9939-1993-1186141-9 - V. P. Havin and N. K. Nikolski (eds.),
*Linear and complex analysis. Problem book 3. Part I*, Lecture Notes in Mathematics, vol. 1573, Springer-Verlag, Berlin, 1994. MR**1334345** - ---
*On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps*, In “International conference on dynamical systems, Montevideo 1995 - a tribute to Ricardo Mañé”, (Eds) F. Ledrappier, J. Lewowicz, S. Newhouse, Pitman Res. Notes in Math. 362, Longman (1996), 167–181. - F. Przytycki and M. Urbański, To appear.
- Feliks Przytycki, Mariusz Urbański, and Anna Zdunik,
*Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. I*, Ann. of Math. (2)**130**(1989), no. 1, 1–40. MR**1005606**, DOI https://doi.org/10.2307/1971475 - Mary Rees,
*Positive measure sets of ergodic rational maps*, Ann. Sci. École Norm. Sup. (4)**19**(1986), no. 3, 383–407. MR**870689** - Dennis Sullivan,
*Conformal dynamical systems*, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR**730296**, DOI https://doi.org/10.1007/BFb0061443 - M. Shishikura,
*The Hausdorff dimension of the boundary of the Mandelbrot set and Julia set*, Preprint SUNY at Stony Brook, IMS 1991/7. - Mariusz Urbański,
*Rational functions with no recurrent critical points*, Ergodic Theory Dynam. Systems**14**(1994), no. 2, 391–414. MR**1279476**, DOI https://doi.org/10.1017/S0143385700007926 - J.-Ch. Yoccoz, Talks on several conferences.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58F23

Retrieve articles in all journals with MSC (1991): 58F23

Additional Information

**Feliks Przytycki**

Affiliation:
Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8 00 950 Warszawa, Poland

MR Author ID:
142490

Email:
feliksp@impan.impan.gov.pl

Received by editor(s):
January 18, 1995

Received by editor(s) in revised form:
July 28, 1995, and June 13, 1996

Additional Notes:
The author acknowledges support by Polish KBN Grants 210469101 and 2 P301 01307 “Iteracje i Fraktale". He expresses also his gratitude to the Universities at Orleans and at Dijon in France, where parts of this paper were written

Article copyright:
© Copyright 1998
American Mathematical Society