Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials
HTML articles powered by AMS MathViewer
- by Feliks Przytycki
- Trans. Amer. Math. Soc. 350 (1998), 717-742
- DOI: https://doi.org/10.1090/S0002-9947-98-01890-X
- PDF | Request permission
Abstract:
We prove that for every rational map on the Riemann sphere $f:\overline {\mathbb {C}} \to \overline {\mathbb {C}}$, if for every $f$-critical point $c\in J$ whose forward trajectory does not contain any other critical point, the growth of $|(f^{n})’(f(c))|$ is at least of order $\exp Q \sqrt n$ for an appropriate constant $Q$ as $n\to \infty$, then $\operatorname {HD}_{\operatorname {ess}} (J)=\alpha _{0}=\operatorname {HD} (J)$. Here $\operatorname {HD}_{\operatorname {ess}} (J)$ is the so-called essential, dynamical or hyperbolic dimension, $\operatorname {HD} (J)$ is Hausdorff dimension of $J$ and $\alpha _{0}$ is the minimal exponent for conformal measures on $J$. If it is assumed additionally that there are no periodic parabolic points then the Minkowski dimension (other names: box dimension, limit capacity) of $J$ also coincides with $\operatorname {HD}(J)$. We prove ergodicity of every $\alpha$-conformal measure on $J$ assuming $f$ has one critical point $c\in J$, no parabolic, and $\sum _{n=0}^{\infty }|(f^{n})’(f(c))|^{-1} <\infty$. Finally for every $\alpha$-conformal measure $\mu$ on $J$ (satisfying an additional assumption), assuming an exponential growth of $|(f^{n})’(f(c))|$, we prove the existence of a probability absolutely continuous with respect to $\mu$, $f$-invariant measure. In the Appendix we prove $\operatorname {HD}_{\operatorname {ess}} (J)=\operatorname {HD} (J)$ also for every non-renormalizable quadratic polynomial $z\mapsto z^{2}+c$ with $c$ not in the main cardioid in the Mandelbrot set.References
- M. Bloch and M. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. Éc. Norm. Sup. (4) 24 (1991), 545–573.
- P. Collet and J.-P. Eckmann, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems 3 (1983), no. 1, 13–46. MR 743027, DOI 10.1017/S0143385700001802
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, vol. 1, Birkhäuser, Boston, Mass., 1980. MR 613981
- Manfred Denker, Feliks Przytycki, and Mariusz Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 255–266. MR 1389624, DOI 10.1017/S0143385700008804
- W. J. Trjitzinsky, General theory of singular integral equations with real kernels, Trans. Amer. Math. Soc. 46 (1939), 202–279. MR 92, DOI 10.1090/S0002-9947-1939-0000092-6
- M. Denker and M. Urbański, The capacity of parabolic Julia sets, Math. Z. 211 (1992), no. 1, 73–86. MR 1179780, DOI 10.1007/BF02571418
- Miguel de Guzmán, Differentiation of integrals in $R^{n}$, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR 0457661, DOI 10.1007/BFb0081986
- John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR 553966, DOI 10.1007/BF01982351
- John Guckenheimer and Stewart Johnson, Distortion of $S$-unimodal maps, Ann. of Math. (2) 132 (1990), no. 1, 71–130. MR 1059936, DOI 10.2307/1971501
- J. Graczyk and G. Świa̧tek, Induced expansion for quadratic polynomials, Ann. Sci. Éc. Norm. Sup. (4) 29 (1996), 399–482.
- J. Graczyk and G. Świa̧tek, Holomorphic box mappings, Preprint IHES/M/1996/76.
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137–173. MR 573822, DOI 10.1007/BF02684777
- M. Lyubich, Geometry of quadratic polynomials: moduli, rigidity and local connectivity, Preprint SUNY at Stony Brook, IMS 1993/9.
- Mikhail Lyubich and John Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc. 6 (1993), no. 2, 425–457. MR 1182670, DOI 10.1090/S0894-0347-1993-1182670-0
- Ricardo Mañé, On a theorem of Fatou, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 1–11. MR 1224298, DOI 10.1007/BF01231694
- Tomasz Nowicki, Some dynamical properties of $S$-unimodal maps, Fund. Math. 142 (1993), no. 1, 45–57. MR 1207470, DOI 10.4064/fm-142-1-45-57
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- Tomasz Nowicki and Sebastian van Strien, Invariant measures exist under a summability condition for unimodal maps, Invent. Math. 105 (1991), no. 1, 123–136. MR 1109621, DOI 10.1007/BF01232258
- E. Prado, Ergodicity of conformal measures for quadratic polynomials, Manuscript, May 23, 1994.
- Feliks Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), no. 1, 309–317. MR 1186141, DOI 10.1090/S0002-9939-1993-1186141-9
- V. P. Havin and N. K. Nikolski (eds.), Linear and complex analysis. Problem book 3. Part I, Lecture Notes in Mathematics, vol. 1573, Springer-Verlag, Berlin, 1994. MR 1334345
- —On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, In “International conference on dynamical systems, Montevideo 1995 - a tribute to Ricardo Mañé”, (Eds) F. Ledrappier, J. Lewowicz, S. Newhouse, Pitman Res. Notes in Math. 362, Longman (1996), 167–181.
- F. Przytycki and M. Urbański, To appear.
- Feliks Przytycki, Mariusz Urbański, and Anna Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. I, Ann. of Math. (2) 130 (1989), no. 1, 1–40. MR 1005606, DOI 10.2307/1971475
- Mary Rees, Positive measure sets of ergodic rational maps, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 383–407. MR 870689, DOI 10.24033/asens.1511
- Dennis Sullivan, Conformal dynamical systems, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 725–752. MR 730296, DOI 10.1007/BFb0061443
- M. Shishikura, The Hausdorff dimension of the boundary of the Mandelbrot set and Julia set, Preprint SUNY at Stony Brook, IMS 1991/7.
- Mariusz Urbański, Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 391–414. MR 1279476, DOI 10.1017/S0143385700007926
- J.-Ch. Yoccoz, Talks on several conferences.
Bibliographic Information
- Feliks Przytycki
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8 00 950 Warszawa, Poland
- MR Author ID: 142490
- Email: feliksp@impan.impan.gov.pl
- Received by editor(s): January 18, 1995
- Received by editor(s) in revised form: July 28, 1995, and June 13, 1996
- Additional Notes: The author acknowledges support by Polish KBN Grants 210469101 and 2 P301 01307 “Iteracje i Fraktale". He expresses also his gratitude to the Universities at Orleans and at Dijon in France, where parts of this paper were written
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 717-742
- MSC (1991): Primary 58F23
- DOI: https://doi.org/10.1090/S0002-9947-98-01890-X
- MathSciNet review: 1407501