## $L^p$ and operator norm estimates for the complex time heat operator on homogeneous trees

HTML articles powered by AMS MathViewer

- by Alberto G. Setti PDF
- Trans. Amer. Math. Soc.
**350**(1998), 743-768 Request permission

## Abstract:

Let $\mathfrak {X}$ be a homogeneous tree of degree greater than or equal to three. In this paper we study the complex time heat operator ${\mathcal {H}}_{\zeta }$ induced by the natural Laplace operator on $\mathfrak {X}$. We prove comparable upper and lower bounds for the $L^{p}$ norms of its convolution kernel $h_{\zeta }$ and derive precise estimates for the $L^{p}\text {–}L^{r}$ operator norms of ${\mathcal {H}}_{\zeta }$ for $\zeta$ belonging to the half plane $\text {Re} \zeta \geq 0.$ In particular, when $\zeta$ is purely imaginary, our results yield a description of the mapping properties of the Schrödinger semigroup on $\mathfrak {X}$.## References

- M. G. Cowling, S. Meda and A. G. Setti, On spherical analysis on groups of isometries of homogeneous trees, (preprint).
- M. G. Cowling, S. Meda and A. G. Setti, Estimates for functions of the Laplace operator on homogeneous trees, (preprint).
- Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Alessandro Figà-Talamanca and Claudio Nebbia,
*Harmonic analysis and representation theory for groups acting on homogeneous trees*, London Mathematical Society Lecture Note Series, vol. 162, Cambridge University Press, Cambridge, 1991. MR**1152801**, DOI 10.1017/CBO9780511662324 - Alessandro Figà-Talamanca and Massimo A. Picardello,
*Harmonic analysis on free groups*, Lecture Notes in Pure and Applied Mathematics, vol. 87, Marcel Dekker, Inc., New York, 1983. MR**710827** - S. Giulini, Estimates for the complex time heat operator on real hyperbolic spaces, (preprint).
- Lars Hörmander,
*Estimates for translation invariant operators in $L^{p}$ spaces*, Acta Math.**104**(1960), 93–140. MR**121655**, DOI 10.1007/BF02547187 - N. N. Lebedev,
*Special functions and their applications*, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR**0350075** - Claudio Nebbia,
*Groups of isometries of a tree and the Kunze-Stein phenomenon*, Pacific J. Math.**133**(1988), no. 1, 141–149. MR**936361**, DOI 10.2140/pjm.1988.133.141 - F. W. J. Olver,
*Asymptotics and special functions*, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR**0435697** - Tadeusz Pytlik,
*Radial convolutors on free groups*, Studia Math.**78**(1984), no. 2, 179–183. MR**766714**, DOI 10.4064/sm-78-2-179-183 - Albert Eagle,
*Series for all the roots of the equation $(z-a)^m=k(z-b)^n$*, Amer. Math. Monthly**46**(1939), 425–428. MR**6**, DOI 10.2307/2303037

## Additional Information

**Alberto G. Setti**- Affiliation: Dipartimento di Matematica, Università di Milano, via Saldini 50, 20133 Milano, Italia
- MR Author ID: 289546
- Email: setti@dsdipa.mat.unimi.it
- Received by editor(s): June 10, 1996
- Additional Notes: Work partially supported by the Italian M.U.R.S.T
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 743-768 - MSC (1991): Primary 43A85, 35K05; Secondary 39A12
- DOI: https://doi.org/10.1090/S0002-9947-98-02042-X
- MathSciNet review: 1443889