Recognizing constant curvature discrete groups in dimension 3
HTML articles powered by AMS MathViewer
- by J. W. Cannon and E. L. Swenson
- Trans. Amer. Math. Soc. 350 (1998), 809-849
- DOI: https://doi.org/10.1090/S0002-9947-98-02107-2
- PDF | Request permission
Abstract:
We characterize those discrete groups $G$ which can act properly discontinuously, isometrically, and cocompactly on hyperbolic $3$-space $\mathbb {H}^3$ in terms of the combinatorics of the action of $G$ on its space at infinity. The major ingredients in the proof are the properties of groups that are negatively curved (in the large) (that is, Gromov hyperbolic), the combinatorial Riemann mapping theorem, and the Sullivan-Tukia theorem on groups which act uniformly quasiconformally on the $2$-sphere.References
- É. Ghys, A. Haefliger, and A. Verjovsky (eds.), Group theory from a geometrical viewpoint, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1170362, DOI 10.1142/1235
- Ballmann, W.; Ghys, E.; Haefliger, A.; de la Harpe, P.; Salem, E.; Strebel, R.; and Troyanov, M., Sur les groupes hyperboliques d’après Mikhael Gromov, available from the authors (The “little green book.”), 1989.
- A. F. Beardon, The geometry of discrete groups, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975) Academic Press, London, 1977, pp. 47–72. MR 0474012
- Bowditch, B. H., Notes on Gromov’s hyperbolicity criterion, Group theory from a geometric viewpoint, World Scientific, Singapore (to appear).
- James W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1984), no. 2, 123–148. MR 758901, DOI 10.1007/BF00146825
- Tim Bedford, Michael Keane, and Caroline Series (eds.), Ergodic theory, symbolic dynamics, and hyperbolic spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989. MR 1130170
- James W. Cannon, The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), no. 2, 155–234. MR 1301392, DOI 10.1007/BF02398434
- J. W. Cannon and Daryl Cooper, A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three, Trans. Amer. Math. Soc. 330 (1992), no. 1, 419–431. MR 1036000, DOI 10.1090/S0002-9947-1992-1036000-0
- J. W. Cannon, W. J. Floyd, and W. R. Parry, Squaring rectangles: the finite Riemann mapping theorem, The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992) Contemp. Math., vol. 169, Amer. Math. Soc., Providence, RI, 1994, pp. 133–212. MR 1292901, DOI 10.1090/conm/169/01656
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994, DOI 10.1007/BFb0084913
- David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694, DOI 10.1201/9781439865699
- William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980), no. 3, 205–218. MR 568933, DOI 10.1007/BF01418926
- Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. MR 146298, DOI 10.2307/1970220
- Harry Furstenberg, Boundaries of Lie groups and discrete subgroups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 301–306. MR 0430160
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1–12. MR 892185, DOI 10.1007/BF01404671
- Tapani Kuusalo, Verallgemeinerter Riemannscher Abbidungssatz und quasikonforme Mannigfaltigkeiten, Ann. Acad. Sci. Fenn. Ser. A I 409 (1967), 24 (German). MR 0218560
- Joseph Lehner, Discontinuous groups and automorphic functions, Mathematical Surveys, No. VIII, American Mathematical Society, Providence, R.I., 1964. MR 0164033, DOI 10.1090/surv/008
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463, DOI 10.1007/978-3-642-65513-5
- Gaven J. Martin, Discrete quasiconformal groups that are not the quasiconformal conjugates of Möbius groups, Ann. Acad. Sci. Fenn. Ser. A I Math. 11 (1986), no. 2, 179–202. MR 853955, DOI 10.5186/aasfm.1986.1113
- Bernard Maskit, Kleinian groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 287, Springer-Verlag, Berlin, 1988. MR 959135
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004
- G. D. Mostow and Yum Tong Siu, A compact Kähler surface of negative curvature not covered by the ball, Ann. of Math. (2) 112 (1980), no. 2, 321–360. MR 592294, DOI 10.2307/1971149
- Reto A. Rüedy, Deformations of embedded Rieman surfaces, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 385–392. MR 0290419
- Siegel, C. L., Topics in Complex Function Theory, vol. II, Wiley-Interscience, New York-London-Sydney-Toronto, 1971.
- Dennis Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 465–496. MR 624833
- Swenson, Eric Lewis, Negatively curved groups and related topics, Ph.D. Dissertation, Brigham Young Univ, 1993.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- Pekka Tukia, A quasiconformal group not isomorphic to a Möbius group, Ann. Acad. Sci. Fenn. Ser. A I Math. 6 (1981), no. 1, 149–160. MR 639972, DOI 10.5186/aasfm.1981.0625
- Pekka Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318–346. MR 861709, DOI 10.1007/BF02796595
Bibliographic Information
- J. W. Cannon
- Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
- Email: cannon@math.byu.edu
- E. L. Swenson
- Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
- Email: eric@math.byu.edu
- Received by editor(s): July 13, 1994
- Received by editor(s) in revised form: November 14, 1996
- Additional Notes: This research was supported in part by The Geometry Center at the University of Minnesota, a Science and Technology Center funded by NSF, DOE, and Minnesota Technology, Inc.; and by NSF Research Grant No. DM-8902071.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 809-849
- MSC (1991): Primary 20F32, 30F40, 57N10; Secondary 30C62, 31A15, 30F10
- DOI: https://doi.org/10.1090/S0002-9947-98-02107-2
- MathSciNet review: 1458317