## Asymptotics for minimal discrete energy on the sphere

HTML articles powered by AMS MathViewer

- by A. B. J. Kuijlaars and E. B. Saff
- Trans. Amer. Math. Soc.
**350**(1998), 523-538 - DOI: https://doi.org/10.1090/S0002-9947-98-02119-9
- PDF | Request permission

## Abstract:

We investigate the energy of arrangements of $N$ points on the surface of the unit sphere $S^d$ in $\mathbf {R}^{d+1}$ that interact through a power law potential $V = 1/r^s ,$ where $s > 0$ and $r$ is Euclidean distance. With $\mathcal {E}_d(s,N)$ denoting the*minimal*energy for such $N$-point arrangements we obtain bounds (valid for all $N$) for $\mathcal {E}_d(s,N)$ in the cases when $0 < s < d$ and $2 \leq d < s$. For $s = d$, we determine the precise asymptotic behavior of $\mathcal {E}_d(d,N)$ as $N \rightarrow \infty$. As a corollary, lower bounds are given for the separation of any pair of points in an $N$-point minimal energy configuration, when $s \geq d \geq 2$. For the unit sphere in $\mathbf {R}^3$ $(d = 2)$, we present two conjectures concerning the asymptotic expansion of $\mathcal {E}_2(s,N)$ that relate to the zeta function $\zeta _L(s)$ for a hexagonal lattice in the plane. We prove an asymptotic upper bound that supports the first of these conjectures. Of related interest, we derive an asymptotic formula for the partial sums of $\zeta _L(s)$ when $0 < s < 2$ (the divergent case).

## References

- József Beck and William W. L. Chen,
*Irregularities of distribution*, Cambridge Tracts in Mathematics, vol. 89, Cambridge University Press, Cambridge, 1987. MR**903025**, DOI 10.1017/CBO9780511565984 - Alexander A. Berezin,
*Asymptotics of the maximum number of repulsive particles on a spherical surface*, J. Math. Phys.**27**(1986), no. 6, 1533–1536. MR**843722**, DOI 10.1063/1.527114 - B. Bergersen, D. Boal and P. Palffy-Muhoray, Equilibrium configurations of particles on a sphere: the case of logarithmic interactions,
*J. Phys. A: Math. Gen.***27**(1994), 2579–2586. - H. F. Blichfeldt, A new principle in the geometry of numbers, with some applications,
*Trans. Amer. Math. Soc.***15**(1914), 227–235. - D. Borwein, J. M. Borwein, R. Shail, and I. J. Zucker,
*Energy of static electron lattices*, J. Phys. A**21**(1988), no. 7, 1519–1531. MR**951042**, DOI 10.1088/0305-4470/21/7/015 - J. Bourgain and J. Lindenstrauss,
*Distribution of points on spheres and approximation by zonotopes*, Israel J. Math.**64**(1988), no. 1, 25–31. MR**981745**, DOI 10.1007/BF02767366 - Harvey Cohn,
*Advanced number theory*, Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1980. Reprint of*A second course in number theory*, 1962. MR**594936** - J. H. Conway and N. J. A. Sloane,
*Sphere packings, lattices and groups*, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1993. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR**1194619**, DOI 10.1007/978-1-4757-2249-9 - Björn E. J. Dahlberg,
*On the distribution of Fekete points*, Duke Math. J.**45**(1978), no. 3, 537–542. MR**507457** - T. Erber and G. M. Hockney, Equilibrium configurations of $N$ equal charges on a sphere,
*J. Phys. A: Math. Gen.***24**(1991), L1369–L1377. - L. Glasser and A. G. Every, Energies and spacings of point charges on a sphere,
*J. Phys. A: Math. Gen.***25**(1992), 2473–2482. - C. J. Everett Jr.,
*Annihilator ideals and representation iteration for abstract rings*, Duke Math. J.**5**(1939), 623–627. MR**13** - Edmund Landau,
*Ausgewählte Abhandlungen zur Gitterpunktlehre*, VEB Deutscher Verlag der Wissenschaften, Berlin, 1962 (German). Herausgegeben von Arnold Walfisz. MR**0150109** - N. S. Landkof,
*Foundations of modern potential theory*, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR**0350027**, DOI 10.1007/978-3-642-65183-0 - Theodor William Melnyk, Osvald Knop, and William Robert Smith,
*Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited*, Canad. J. Chem.**55**(1977), no. 10, 1745–1761 (English, with French summary). MR**0444497**, DOI 10.1139/v77-246 - Claus Müller,
*Spherical harmonics*, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR**0199449**, DOI 10.1007/BFb0094775 - E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou,
*Minimal discrete energy on the sphere*, Math. Res. Lett.**1**(1994), no. 6, 647–662. MR**1306011**, DOI 10.4310/MRL.1994.v1.n6.a3 - E. A. Rakhmanov, E. B. Saff, and Y. M. Zhou,
*Electrons on the sphere*, Computational methods and function theory 1994 (Penang), Ser. Approx. Decompos., vol. 5, World Sci. Publ., River Edge, NJ, 1995, pp. 293–309. MR**1415178** - Sergio Sispanov,
*Generalización del teorema de Laguerre*, Bol. Mat.**12**(1939), 113–117 (Spanish). MR**3** - Michael Shub and Steve Smale,
*Complexity of Bezout’s theorem. III. Condition number and packing*, J. Complexity**9**(1993), no. 1, 4–14. Festschrift for Joseph F. Traub, Part I. MR**1213484**, DOI 10.1006/jcom.1993.1002 - Gábor Szegő,
*Orthogonal polynomials*, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1967. MR**0310533** - P. Hebroni,
*Sur les inverses des éléments dérivables dans un anneau abstrait*, C. R. Acad. Sci. Paris**209**(1939), 285–287 (French). MR**14** - Gerold Wagner,
*On means of distances on the surface of a sphere (lower bounds)*, Pacific J. Math.**144**(1990), no. 2, 389–398. MR**1061328**, DOI 10.2140/pjm.1990.144.389 - Gerold Wagner,
*On means of distances on the surface of a sphere. II. Upper bounds*, Pacific J. Math.**154**(1992), no. 2, 381–396. MR**1159518**, DOI 10.2140/pjm.1992.154.381

## Bibliographic Information

**A. B. J. Kuijlaars**- Affiliation: Faculteit Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands
- Address at time of publication: Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
- MR Author ID: 341696
- Email: maarno@math.cityu.edu.hk
**E. B. Saff**- Affiliation: Institute for Constructive Mathematics, Department of Mathematics, University of South Florida, Tampa, Florida 33620
- MR Author ID: 152845
- Email: esaff@math.usf.edu
- Received by editor(s): October 9, 1995
- Additional Notes: The first author is supported by the Netherlands Foundation for Mathematics SMC with financial aid from the Netherlands Organization for the Advancement of Scientific Research (NWO). This research was done while visiting the University of South Florida, Tampa

The research of the second author is supported, in part, by the U.S. National Science Foundation under grant DMS-9501130. - © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 523-538 - MSC (1991): Primary 52A40; Secondary 31C20, 41A60
- DOI: https://doi.org/10.1090/S0002-9947-98-02119-9
- MathSciNet review: 1458327