Algebraic transition matrices in the Conley index theory
HTML articles powered by AMS MathViewer
- by Robert Franzosa and Konstantin Mischaikow
- Trans. Amer. Math. Soc. 350 (1998), 889-912
- DOI: https://doi.org/10.1090/S0002-9947-98-01666-3
- PDF | Request permission
Abstract:
We introduce the concept of an algebraic transition matrix. These are degree zero isomorphisms which are upper triangular with respect to a partial order. It is shown that all connection matrices of a Morse decomposition for which the partial order is a series-parallel admissible order are related via a conjugation with one of these transition matrices. This result is then restated in the form of an existence theorem for global bifurcations. Simple examples of how these results can be applied are also presented.References
- C. Conley and Joel Smoller, Isolated invariant sets of parameterized systems of differential equations, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977) Lecture Notes in Math., vol. 668, Springer, Berlin, 1978, pp. 30–47. MR 518546
- C. Conley and P. Fife, Critical manifolds, travelling waves, and an example from population genetics, J. Math. Biol. 14 (1982), no. 2, 159–176. MR 667796, DOI 10.1007/BF01832842
- M. Eidenschink and K. Mischaikow, A numerical algorithm for finding isolating neighborhoods, in progress.
- Bernold Fiedler and Konstantin Mischaikow, Dynamics of bifurcations for variational problems with $\textrm {O}(3)$ equivariance: a Conley index approach, Arch. Rational Mech. Anal. 119 (1992), no. 2, 145–196. MR 1176363, DOI 10.1007/BF00375120
- Robert Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986), no. 1, 193–213. MR 857439, DOI 10.1090/S0002-9947-1986-0857439-7
- Robert D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. Amer. Math. Soc. 310 (1988), no. 2, 781–803. MR 973177, DOI 10.1090/S0002-9947-1988-0973177-6
- Robert D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 561–592. MR 978368, DOI 10.1090/S0002-9947-1989-0978368-7
- Robert D. Franzosa and Konstantin Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces, J. Differential Equations 71 (1988), no. 2, 270–287. MR 927003, DOI 10.1016/0022-0396(88)90028-9
- T. Gedeon and K. Mischaikow, Structure of the global attractor of cyclic feedback systems, Dyn. Diff. Eqs. (to appear).
- H. Kokubu, K. Mischaikow and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equation, Nonlinearity 9 (1996), 1263–1280.
- John Mallet-Paret, Morse decompositions for delay-differential equations, J. Differential Equations 72 (1988), no. 2, 270–315. MR 932368, DOI 10.1016/0022-0396(88)90157-X
- Christopher McCord, The connection map for attractor-repeller pairs, Trans. Amer. Math. Soc. 307 (1988), no. 1, 195–203. MR 936812, DOI 10.1090/S0002-9947-1988-0936812-4
- Christopher McCord and Konstantin Mischaikow, Connected simple systems, transition matrices, and heteroclinic bifurcations, Trans. Amer. Math. Soc. 333 (1992), no. 1, 397–422. MR 1059711, DOI 10.1090/S0002-9947-1992-1059711-X
- Christopher McCord and Konstantin Mischaikow, On the global dynamics of attractors for scalar delay equations, J. Amer. Math. Soc. 9 (1996), no. 4, 1095–1133. MR 1354959, DOI 10.1090/S0894-0347-96-00207-X
- —, Singular and Topological Transition Matrices in the Conley Index Theory, preprint.
- B. H. Tongue and K. Gu, A higher order method of interpolated cell mapping, J. Sound Vibration 125 (1988), no. 1, 169–179. MR 957032, DOI 10.1016/0022-460X(88)90424-5
- Konstantin Mischaikow, Transition systems, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 1-2, 155–175. MR 1007542, DOI 10.1017/S0308210500028225
- —, Global asymptotic dynamics of gradient-like bistable equations, SIAM J. Math. Anal., to appear.
- Konstantin Mischaikow and James F. Reineck, Travelling waves in predator-prey systems, SIAM J. Math. Anal. 24 (1993), no. 5, 1179–1214. MR 1234011, DOI 10.1137/0524068
- Konstantin Mischaikow and Yoshihisa Morita, Dynamics on the global attractor of a gradient flow arising from the Ginzburg-Landau equation, Japan J. Indust. Appl. Math. 11 (1994), no. 2, 185–202. MR 1286431, DOI 10.1007/BF03167221
- Richard Moeckel, Morse decompositions and connection matrices, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 227–249. MR 967640, DOI 10.1017/S0143385700009445
- Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66–72. MR 1276767, DOI 10.1090/S0273-0979-1995-00558-6
- —, Chaos in the Lorenz Equations: the details, in preparation.
- —, Singular Index Pairs, preprint.
- Konstantin Mischaikow and James F. Reineck, Travelling waves in predator-prey systems, SIAM J. Math. Anal. 24 (1993), no. 5, 1179–1214. MR 1234011, DOI 10.1137/0524068
- James F. Reineck, Connecting orbits in one-parameter families of flows, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 359–374. MR 967644, DOI 10.1017/S0143385700009482
- James F. Reineck, The connection matrix in Morse-Smale flows, Trans. Amer. Math. Soc. 322 (1990), no. 2, 523–545. MR 972705, DOI 10.1090/S0002-9947-1990-0972705-3
- Ivan Rival, Stories about order and the letter ${\mathsf N}$ (en), Combinatorics and ordered sets (Arcata, Calif., 1985) Contemp. Math., vol. 57, Amer. Math. Soc., Providence, RI, 1986, pp. 263–285. MR 856239, DOI 10.1090/conm/057/856239
- Krzysztof P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag, Berlin, 1987. MR 910097, DOI 10.1007/978-3-642-72833-4
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146, DOI 10.1007/978-1-4684-0152-3
Bibliographic Information
- Robert Franzosa
- Affiliation: Department of Mathematics, University of Maine, Orono, Maine 04469
- MR Author ID: 68895
- Email: franzosa@gauss.umemat.maine.edu
- Konstantin Mischaikow
- Affiliation: Center for Dynamical Systems and Nonlinear Studies, School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
- MR Author ID: 249919
- Email: mischail@math.gatech.edu
- Received by editor(s): January 3, 1995
- Received by editor(s) in revised form: October 4, 1995
- Additional Notes: Research was supported in part by NSF Grant DMS-9101412. Part of this paper was written while the second author was visiting the Instituto de Ciencias Mathematicas de São Carlo of the Universidade de São Paulo. He would like to take this opportunity to thank the members of the institute for their warm hospitality.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 889-912
- MSC (1991): Primary 58F35; Secondary 58F30, 35K57
- DOI: https://doi.org/10.1090/S0002-9947-98-01666-3
- MathSciNet review: 1360223