Metric completions of ordered groups and $K_0$ of exchange rings
HTML articles powered by AMS MathViewer
- by E. Pardo
- Trans. Amer. Math. Soc. 350 (1998), 913-933
- DOI: https://doi.org/10.1090/S0002-9947-98-01744-9
- PDF | Request permission
Abstract:
We give a description of the closure of the natural affine continuous function representation of $K_0(R)$ for any exchange ring $R$. This goal is achieved by extending the results of Goodearl and Handelman, about metric completions of dimension groups, to a more general class of pre-ordered groups, which includes $K_0$ of exchange rings. As a consequence, the results about $K_0^+$ of regular rings, which the author gave in an earlier paper, can be extended to a wider class of rings, which includes $C^*$-algebras of real rank zero, among others. Also, the framework of pre-ordered groups developed here allows other potential applications.References
- Pere Ara, Strongly $\pi$-regular rings have stable range one, Proc. Amer. Math. Soc. 124 (1996), no. 11, 3293–3298. MR 1343679, DOI 10.1090/S0002-9939-96-03473-9
- Pere Ara and K. R. Goodearl, The almost isomorphism relation for simple regular rings, Publ. Mat. 36 (1992), no. 2A, 369–388 (1993). MR 1209808, DOI 10.5565/PUBLMAT_{3}62A92_{0}2
- P.Ara, K.R.Goodearl, K.C.O’Meara, E.Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. (to appear).
- P. Ara, K. R. Goodearl, E. Pardo, and D. V. Tyukavkin, $K$-theoretically simple von Neumann regular rings, J. Algebra 174 (1995), no. 2, 659–677. MR 1334230, DOI 10.1006/jabr.1995.1145
- P. Ara and E. Pardo, Refinement monoids with weak comparability and applications to regular rings and $C^*$-algebras, Proc. Amer. Math. Soc. 124 (1996), no. 3, 715–720. MR 1301484, DOI 10.1090/S0002-9939-96-03059-6
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- Bruce E. Blackadar, Traces on simple AF $C^{\ast }$-algebras, J. Functional Analysis 38 (1980), no. 2, 156–168. MR 587906, DOI 10.1016/0022-1236(80)90062-2
- Bruce Blackadar, Comparison theory for simple $C^*$-algebras, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge Univ. Press, Cambridge, 1988, pp. 21–54. MR 996438
- Bruce Blackadar and David Handelman, Dimension functions and traces on $C^{\ast }$-algebras, J. Functional Analysis 45 (1982), no. 3, 297–340. MR 650185, DOI 10.1016/0022-1236(82)90009-X
- Walter D. Burgess and David E. Handelman, The $N^{\ast }$-metric completion of regular rings, Math. Ann. 261 (1982), no. 2, 235–254. MR 675737, DOI 10.1007/BF01456221
- Lawrence G. Brown and Gert K. Pedersen, $C^*$-algebras of real rank zero, J. Funct. Anal. 99 (1991), no. 1, 131–149. MR 1120918, DOI 10.1016/0022-1236(91)90056-B
- Victor P. Camillo and Hua-Ping Yu, Stable range one for rings with many idempotents, Trans. Amer. Math. Soc. 347 (1995), no. 8, 3141–3147. MR 1277100, DOI 10.1090/S0002-9947-1995-1277100-2
- Victor P. Camillo and Hua-Ping Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737–4749. MR 1285703, DOI 10.1080/00927879408825098
- Peter Crawley and Bjarni Jónsson, Refinements for infinite direct decompositions of algebraic systems, Pacific J. Math. 14 (1964), 797–855. MR 169806, DOI 10.2140/pjm.1964.14.797
- Edward G. Effros, David E. Handelman, and Chao Liang Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), no. 2, 385–407. MR 564479, DOI 10.2307/2374244
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
- K. R. Goodearl, Partially ordered abelian groups with interpolation, Mathematical Surveys and Monographs, vol. 20, American Mathematical Society, Providence, RI, 1986. MR 845783, DOI 10.1090/surv/020
- K. R. Goodearl, Simple regular rings and rank functions, Math. Ann. 214 (1975), 267–287. MR 409541, DOI 10.1007/BF01352109
- B. J. Gardner, Radical classes of regular rings with Artinian primitive images, Pacific J. Math. 99 (1982), no. 2, 337–349. MR 658064, DOI 10.2140/pjm.1982.99.337
- K.R.Goodearl, $C^{*}$-algebra’s of real rank zero whose $K_0$ are not Riesz groups, Canad. Math. Bull. 39 (1996), 429–437.
- K. R. Goodearl and D. Handelman, Simple self-injective rings, Comm. Algebra 3 (1975), no. 9, 797–834. MR 379593, DOI 10.1080/00927877508822074
- K. R. Goodearl and D. E. Handelman, Metric completions of partially ordered abelian groups, Indiana Univ. Math. J. 29 (1980), no. 6, 861–895. MR 589651, DOI 10.1512/iumj.1980.29.29060
- K. R. Goodearl and R. B. Warfield Jr., Algebras over zero-dimensional rings, Math. Ann. 223 (1976), no. 2, 157–168. MR 412230, DOI 10.1007/BF01360879
- Israel Halperin, Regular rank rings, Canadian J. Math. 17 (1965), 709–719. MR 191926, DOI 10.4153/CJM-1965-071-4
- John Hannah and K. C. O’Meara, Depth of idempotent-generated subsemigroups of a regular ring, Proc. London Math. Soc. (3) 59 (1989), no. 3, 464–482. MR 1014867, DOI 10.1112/plms/s3-59.3.464
- J. Moncasi, A regular ring whose $K_0$ is not a Riesz group, Comm. Algebra 13 (1985), no. 1, 125–131. MR 768090, DOI 10.1080/00927878508823152
- W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269–278. MR 439876, DOI 10.1090/S0002-9947-1977-0439876-2
- W. K. Nicholson, $I$-rings, Trans. Amer. Math. Soc. 207 (1975), 361–373. MR 379576, DOI 10.1090/S0002-9947-1975-0379576-9
- E. Pardo, On a density condition for $K^+_0$ of von Neumann regular rings, Comm. Algebra 22 (1994), no. 2, 707–719. MR 1255888, DOI 10.1080/00927879408824870
- E.Pardo, On the representation of simple Riesz groups, Comm. Algebra (to appear).
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Marc A. Rieffel, The cancellation theorem for projective modules over irrational rotation $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 47 (1983), no. 2, 285–302. MR 703981, DOI 10.1112/plms/s3-47.2.285
- Josef Stock, On rings whose projective modules have the exchange property, J. Algebra 103 (1986), no. 2, 437–453. MR 864422, DOI 10.1016/0021-8693(86)90145-6
- Joan Torrens, On the $N^\ast$-metric completion of regular rings, Arch. Math. (Basel) 47 (1986), no. 6, 529–534. MR 871291, DOI 10.1007/BF01189862
- J.Villadsen, Simple $C^*$-algebras with perforation, Preprint, 1995.
- R. B. Warfield Jr., Exchange rings and decompositions of modules, Math. Ann. 199 (1972), 31–36. MR 332893, DOI 10.1007/BF01419573
- Friedrich Wehrung, Injective positively ordered monoids. I, II, J. Pure Appl. Algebra 83 (1992), no. 1, 43–82, 83–100. MR 1190444, DOI 10.1016/0022-4049(92)90104-N
- Friedrich Wehrung, Injective positively ordered monoids. I, II, J. Pure Appl. Algebra 83 (1992), no. 1, 43–82, 83–100. MR 1190444, DOI 10.1016/0022-4049(92)90104-N
- F.Wehrung, Tensor products of structures with interpolation, Pacific J.Math. 176 (1996), 267–285.
- Shuang Zhang, Matricial structure and homotopy type of simple $C^*$-algebras with real rank zero, J. Operator Theory 26 (1991), no. 2, 283–312. MR 1225518
- Shuang Zhang, Diagonalizing projections in multiplier algebras and in matrices over a $C^*$-algebra, Pacific J. Math. 145 (1990), no. 1, 181–200. MR 1066403, DOI 10.2140/pjm.1990.145.181
Bibliographic Information
- E. Pardo
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
- Address at time of publication: Departamento de Matematics, Universidad de Cādiz, Aptdo. 40, 11510 Puerto Real (Cādiz), Spain
- MR Author ID: 345531
- ORCID: 0000-0002-1909-2895
- Email: enrique.pardo@uca.es
- Received by editor(s): October 12, 1995
- Additional Notes: Partially supported by DGICYT Grant PB-93-0900 and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya. This paper is part of the author’s Ph.D.Thesis, written under the supervision of Professor P. Ara
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 913-933
- MSC (1991): Primary 16D70, 19K14, 20K20; Secondary 16A50, 46L55
- DOI: https://doi.org/10.1090/S0002-9947-98-01744-9
- MathSciNet review: 1376552