Dyadic equivalence to completely positive entropy
HTML articles powered by AMS MathViewer
- by Adam Fieldsteel and J. Roberto Hasfura-Buenaga
- Trans. Amer. Math. Soc. 350 (1998), 1143-1166
- DOI: https://doi.org/10.1090/S0002-9947-98-02115-1
- PDF | Request permission
Abstract:
We show that every free ergodic action of $\bigoplus _1^\infty {\mathbb Z}_2$ of positive entropy is dyadically equivalent to an action with completely positive entropy.References
- Adam Fieldsteel and N. A. Friedman, Restricted orbit changes of ergodic $\textbf {Z}^d$-actions to achieve mixing and completely positive entropy, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 505–528. MR 873429, DOI 10.1017/S0143385700003667
- J. R. Hasfura-Buenaga, Mixing for dyadic equivalence, Acta Math. Univ. Comenian. (N.S.) 64 (1995), no. 1, 141–152. MR 1360993
- Andres del Junco and Daniel J. Rudolph, Residual behavior of induced maps, Israel J. Math. 93 (1996), 387–398. MR 1380654, DOI 10.1007/BF02761114
- Janet Kammeyer, D. J. Rudolph, Restricted orbit equivalence for ergodic $\textbf {Z}^d-$actions, submitted, Ergodic Th. and Dyn. Sys.
- Robert R. Phelps, Lectures on Choquet’s theorem, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0193470
- Daniel J. Rudolph, Restricted orbit equivalence, Mem. Amer. Math. Soc. 54 (1985), no. 323, v+150. MR 782648, DOI 10.1090/memo/0323
- D. S. Ornstein and M. Smorodinsky, Ergodic flows of positive entropy can be time changed to become $K$-flows, Israel J. Math. 26 (1977), no. 1, 75–83. MR 447526, DOI 10.1007/BF03007657
- Donald S. Ornstein and Benjamin Weiss, Every transformation is bilaterally deterministic, Israel J. Math. 21 (1975), no. 2-3, 154–158. MR 382600, DOI 10.1007/BF02760793
- Donald Ornstein and Benjamin Weiss, The Shannon-McMillan-Breiman theorem for a class of amenable groups, Israel J. Math. 44 (1983), no. 1, 53–60. MR 693654, DOI 10.1007/BF02763171
- Meir Smorodinsky, Ergodic theory, entropy, Lecture Notes in Mathematics, Vol. 214, Springer-Verlag, Berlin-New York, 1971. MR 0422582, DOI 10.1007/BFb0066086
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- A. M. Stepin, The entropy invariant of decreasing squences of measurable partitions. , Funkcional. Anal. i Priložen. 5 (1971), no. 3, 80–84 (Russian). MR 0284568
- Jean-Paul Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l’un est un schéma de Bernoulli, Israel J. Math. 21 (1975), no. 2-3, 177–207 (French, with English summary). MR 399419, DOI 10.1007/BF02760797
- A. M. Veršik, Descending sequences of measurable decompositions, and their applications, Dokl. Akad. Nauk SSSR 193 (1970), 748–751 (Russian). MR 0268360
- A. M. Veršik, A continuum of pairwise nonisomorphic dyadic sequences, Funkcional. Anal. i Priložen. 5 (1971), no. 3, 16–18 (Russian). MR 0281879
Bibliographic Information
- Adam Fieldsteel
- Affiliation: Department of Mathematics, Wesleyan University, Middletown, Connecticut 06459
- Email: afieldsteel@mail.wesleyan.edu
- J. Roberto Hasfura-Buenaga
- Affiliation: Department of Mathematics, Trinity University, San Antonio, Texas 78212
- Email: jhasfura@mail.trinity.edu
- Received by editor(s): March 6, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 1143-1166
- MSC (1991): Primary 28D15, 28D20; Secondary 58F11
- DOI: https://doi.org/10.1090/S0002-9947-98-02115-1
- MathSciNet review: 1458323