## $n$-unisolvent sets and flat incidence structures

HTML articles powered by AMS MathViewer

- by Burkard Polster PDF
- Trans. Amer. Math. Soc.
**350**(1998), 1619-1641 Request permission

## Abstract:

For the past forty years or so topological incidence geometers and mathematicians interested in interpolation have been studying very similar objects. Nevertheless no communication between these two groups of mathematicians seems to have taken place during that time. The main goal of this paper is to draw attention to this fact and to demonstrate that by combining results from both areas it is possible to gain many new insights about the fundamentals of both areas. In particular, we establish the existence of nested orthogonal arrays of strength $n$, for short nested $n$-OAs, that are natural generalizations of flat affine planes and flat Laguerre planes. These incidence structures have point sets that are â€śflatâ€ť topological spaces like the MĂ¶bius strip, the cylinder, and strips of the form $I \times \mathbb {R}$, where $I$ is an interval of $\mathbb {R}$. Their circles (or lines) are subsets of the point sets homeomorphic to the circle in the first two cases and homeomorphic to $I$ in the last case. Our orthogonal arrays of strength $n$ arise from $n$-unisolvent sets of half-periodic functions, $n$-unisolvent sets of periodic functions, and $n$-unisolvent sets of functions $I\to \mathbb {R}$, respectively. Associated with every point $p$ of a nested $n$-OA, $n>1$, is a nested $(n-1)$-OAâ€”the derived $(n-1)$-OA at the point $p$. We discover that, in our examples that arise from $n$-unisolvent sets of $n-1$ times differentiable functions that solve the Hermite interpolation problem, deriving in our geometrical sense coincides with deriving in the analytical sense.## References

- Dieter Betten,
*Topologische Geometrien auf dem MĂ¶biusband*, Math. Z.**107**(1968), 363â€“379 (German). MR**238331**, DOI 10.1007/BF01110068 - Philip C. Curtis Jr.,
*$n$-parameter families and best approximation*, Pacific J. Math.**9**(1959), 1013â€“1027. MR**108670**, DOI 10.2140/pjm.1959.9.1013 - Wilhelm Forst,
*Variationsmindernde Eigenschaften eines speziellen Kreinschen Kernes*, Math. Z.**148**(1976), no.Â 1, 67â€“70. MR**402063**, DOI 10.1007/BF01187871 - David G. Glynn,
*A geometrical representation theory for orthogonal arrays*, Bull. Austral. Math. Soc.**49**(1994), no.Â 2, 311â€“324. MR**1265367**, DOI 10.1017/S0004972700016373 - Hansjoachim Groh,
*Topologische Laguerreebenen. I*, Abh. Math. Sem. Univ. Hamburg**32**(1968), 216â€“231 (German). MR**234343**, DOI 10.1007/BF02993130 - Hansjoachim Groh,
*Topologische Laguerreebenen. II*, Abh. Math. Sem. Univ. Hamburg**34**(1969/70), 11â€“21 (German). MR**257857**, DOI 10.1007/BF02992884 - Philip Hartman,
*Unrestricted $n$-parameter families*, Rend. Circ. Mat. Palermo (2)**7**(1958), 123â€“142. MR**105470**, DOI 10.1007/BF02854523 - Werner Heise,
*Optimal codes, $n$-arcs and Laguerre geometry*, Acta Informat.**6**(1976), no.Â 4, 403â€“406. MR**0424393**, DOI 10.1007/bf00268141 - Darell J. Johnson,
*The trigonometric Hermite-Birkhoff interpolation problem*, Trans. Amer. Math. Soc.**212**(1975), 365â€“374. MR**417662**, DOI 10.1090/S0002-9947-1975-0417662-5 - Samuel Karlin and William J. Studden,
*Tchebycheff systems: With applications in analysis and statistics*, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR**0204922** - George G. Lorentz, Kurt Jetter, and Sherman D. Riemenschneider,
*Birkhoff interpolation*, Encyclopedia of Mathematics and its Applications, vol. 19, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR**680938** - R. A. Lorentz,
*Simultaneous approximation and Birkhoff interpolation. II. The periodic case*, J. Approx. Theory**44**(1985), no.Â 1, 21â€“29. MR**787704**, DOI 10.1016/0021-9045(85)90064-4 - G. G. Lorentz and S. D. Riemenschneider,
*Recent progress in Birkhoff interpolation*, Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977) North-Holland Math. Stud., vol. 35, North-Holland, Amsterdam-New York, 1979, pp.Â 187â€“236. MR**553421** - Ronald M. Mathsen,
*$\lambda (n)$-parameter families*, Canad. Math. Bull.**12**(1969), 185â€“191. MR**245885**, DOI 10.4153/CMB-1969-020-9 - Morgan Ward and R. P. Dilworth,
*The lattice theory of ova*, Ann. of Math. (2)**40**(1939), 600â€“608. MR**11**, DOI 10.2307/1968944 - F. R. Moulton,
*A simple non-desarguesian plane geometry*, Trans. Amer. Math. Soc.**3**(1902), 192â€“195. - Burkard Polster,
*Integrating and differentiating two-dimensional incidence structures*, Arch. Math. (Basel)**64**(1995), no.Â 1, 75â€“85. MR**1305663**, DOI 10.1007/BF01193553 - Burkard Polster,
*Integrating completely unisolvent functions*, J. Approx. Theory**82**(1995), no.Â 3, 434â€“439. MR**1348731**, DOI 10.1006/jath.1995.1089 - John R. Rice,
*The approximation of functions. Vol. I: Linear theory*, Addison-Wesley Publishing Co., Reading, Mass.-London, 1964. MR**0166520** - John R. Rice,
*The approximation of functions. Vol. 2: Nonlinear and multivariate theory*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0244675** - Helmut R. Salzmann,
*Topological planes*, Advances in Math.**2**(1967), no.Â fasc. 1, 1â€“60. MR**220135**, DOI 10.1016/S0001-8708(67)80002-1 - Helmut Salzmann, Dieter Betten, Theo GrundhĂ¶fer, Hermann HĂ¤hl, Rainer LĂ¶wen, and Markus Stroppel,
*Compact projective planes*, De Gruyter Expositions in Mathematics, vol. 21, Walter de Gruyter & Co., Berlin, 1995. With an introduction to octonion geometry. MR**1384300**, DOI 10.1515/9783110876833 - Larry L. Schumaker,
*Spline functions: basic theory*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR**606200** - GĂĽnter F. Steinke,
*Topological affine planes composed of two Desarguesian half planes and projective planes with trivial collineation group*, Arch. Math. (Basel)**44**(1985), no.Â 5, 472â€“480. MR**792373**, DOI 10.1007/BF01229332 - GĂĽnter F. Steinke,
*Semiclassical topological flat Laguerre planes obtained by pasting along two parallel classes*, J. Geom.**32**(1988), no.Â 1-2, 133â€“156. MR**950570**, DOI 10.1007/BF01222526 - GĂĽnter F. Steinke,
*Topological circle geometries*, Handbook of incidence geometry, North-Holland, Amsterdam, 1995, pp.Â 1325â€“1354. MR**1360739**, DOI 10.1016/B978-044488355-1/50026-8 - Charles Hopkins,
*Rings with minimal condition for left ideals*, Ann. of Math. (2)**40**(1939), 712â€“730. MR**12**, DOI 10.2307/1968951 - M. L. H. Willems,
*Optimal codes, Laguerre and special Laguerre $i$-structures*, European J. Combin.**4**(1983), no.Â 1, 87â€“92. MR**694470**, DOI 10.1016/S0195-6698(83)80010-9 - M. L. H. Willems and J. A. Thas,
*A note on the existence of special Laguerre $i$-structures and optimal codes*, European J. Combin.**4**(1983), no.Â 1, 93â€“96. MR**694471**, DOI 10.1016/S0195-6698(83)80011-0

## Additional Information

**Burkard Polster**- Affiliation: Department of Pure Mathematics, The University of Adelaide, Adelaide, SA 5005, Australia
- Email: bpolster@maths.adelaide.edu.au
- Received by editor(s): October 3, 1994
- Received by editor(s) in revised form: July 20, 1996
- Additional Notes: This research was supported by a Feodor Lynen fellowship.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 1619-1641 - MSC (1991): Primary 41A05, 51H15; Secondary 05B15, 51B15
- DOI: https://doi.org/10.1090/S0002-9947-98-01912-6
- MathSciNet review: 1407710