Commuting Toeplitz operators with pluriharmonic symbols
HTML articles powered by AMS MathViewer
- by Dechao Zheng
- Trans. Amer. Math. Soc. 350 (1998), 1595-1618
- DOI: https://doi.org/10.1090/S0002-9947-98-02051-0
- PDF | Request permission
Abstract:
By making use of $\mathcal M$-harmonic function theory, we characterize commuting Toeplitz operators with bounded pluriharmonic symbols on the Bergman space of the unit ball or on the Hardy space of the unit sphere in $n$-dimensional complex space.References
- Patrick Ahern, Manuel Flores, and Walter Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397. MR 1203459, DOI 10.1006/jfan.1993.1018
- Patrick Ahern and Walter Rudin, ${\scr M}$-harmonic products, Indag. Math. (N.S.) 2 (1991), no. 2, 141–147. MR 1123356, DOI 10.1016/0019-3577(91)90001-N
- Sheldon Axler and Željko Čučković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1–12. MR 1079815, DOI 10.1007/BF01194925
- Sheldon Axler and Pamela Gorkin, Algebras on the disk and doubly commuting multiplication operators, Trans. Amer. Math. Soc. 309 (1988), no. 2, 711–723. MR 961609, DOI 10.1090/S0002-9947-1988-0961609-9
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9
- Boo Rim Choe and Young Joo Lee, Pluriharmonic symbols of commuting Toeplitz operators, Illinois J. Math. 37 (1993), no. 3, 424–436. MR 1219648
- Miroslav Engliš, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254. MR 1270592, DOI 10.1006/jfan.1994.1048
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- De Chao Zheng, Hankel operators and Toeplitz operators on the Bergman space, J. Funct. Anal. 83 (1989), no. 1, 98–120. MR 993443, DOI 10.1016/0022-1236(89)90032-3
- Dechao Zheng, Semi-commutators of Toeplitz operators on the Bergman space, Integral Equations Operator Theory 25 (1996), no. 3, 347–372. MR 1395711, DOI 10.1007/BF01262299
Bibliographic Information
- Dechao Zheng
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Address at time of publication: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240
- MR Author ID: 229147
- Email: zheng@math.vanderbilt.edu
- Received by editor(s): June 30, 1995
- Received by editor(s) in revised form: July 15, 1996
- Additional Notes: Supported in part by the National Science Foundation.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 1595-1618
- MSC (1991): Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9947-98-02051-0
- MathSciNet review: 1443898