A new degree bound for vector invariants of symmetric groups
HTML articles powered by AMS MathViewer
- by P. Fleischmann
- Trans. Amer. Math. Soc. 350 (1998), 1703-1712
- DOI: https://doi.org/10.1090/S0002-9947-98-02064-9
- PDF | Request permission
Abstract:
Let $R$ be a commutative ring, $V$ a finitely generated free $R$-module and $G\le GL_R(V)$ a finite group acting naturally on the graded symmetric algebra $A=S(V)$. Let $\beta (V,G)$ denote the minimal number $m$, such that the ring $A^G$ of invariants can be generated by finitely many elements of degree at most $m$.
For $G=\Sigma _n$ and $V(n,k)$, the $k$-fold direct sum of the natural permutation module, one knows that $\beta (V(n,k),\Sigma _n) \le n$, provided that $n!$ is invertible in $R$. This was used by E. Noether to prove $\beta (V,G) \le |G|$ if $|G|! \in R^*$.
In this paper we prove $\beta (V(n,k),\Sigma _n) \le max\{n,k(n-1)\}$ for arbitrary commutative rings $R$ and show equality for $n=p^s$ a prime power and $R = \mathbb {Z}$ or any ring with $n\cdot 1_R=0$. Our results imply \begin{equation*} \beta (V,G)\le max\{|G|, \operatorname {rank}(V)(|G|-1)\}\end{equation*} for any ring with $|G| \in R^*$.
References
- H. E. A. Campbell, I. Hughes, and R. D. Pollack, Vector invariants of symmetric groups, Canad. Math. Bull. 33 (1990), no. 4, 391–397. MR 1091341, DOI 10.4153/CMB-1990-064-8
- Shou-Jen Hu and Ming-chang Kang, Efficient generation of the ring of invariants, J. Algebra 180 (1996), no. 2, 341–363. MR 1378534, DOI 10.1006/jabr.1996.0071
- E. Noether, Der Endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann. 77, 89-92, (1916).
- E. Noether, Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik $p$, Nachr. Ges. Wiss. Göttingen (1926), 28-35; reprinted in ‘Collected Papers’, pp. 485-492, Springer Verlag, Berlin (1983).
- D. Richman, Explicit generators of the invariants of finite groups, Adv. Math. 124 (1996), 49–76.
- Larry Smith, E. Noether’s bound in the invariant theory of finite groups, Arch. Math. (Basel) 66 (1996), no. 2, 89–92. MR 1367149, DOI 10.1007/BF01273338
- Larry Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR 1328644, DOI 10.1201/9781439864470
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
Bibliographic Information
- P. Fleischmann
- Affiliation: Institute for Experimental Mathematics, University of Essen, Ellernstr. 29, 45326 Essen, Germany
- Email: peter@exp-math.uni-essen.de
- Received by editor(s): June 20, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 1703-1712
- MSC (1991): Primary 13A50
- DOI: https://doi.org/10.1090/S0002-9947-98-02064-9
- MathSciNet review: 1451600