## A new degree bound for vector invariants of symmetric groups

HTML articles powered by AMS MathViewer

- by P. Fleischmann PDF
- Trans. Amer. Math. Soc.
**350**(1998), 1703-1712 Request permission

## Abstract:

Let $R$ be a commutative ring, $V$ a finitely generated free $R$-module and $G\le GL_R(V)$ a finite group acting naturally on the graded symmetric algebra $A=S(V)$. Let $\beta (V,G)$ denote the minimal number $m$, such that the ring $A^G$ of invariants can be generated by finitely many elements of degree at most $m$.

For $G=\Sigma _n$ and $V(n,k)$, the $k$-fold direct sum of the natural permutation module, one knows that $\beta (V(n,k),\Sigma _n) \le n$, provided that $n!$ is invertible in $R$. This was used by E. Noether to prove $\beta (V,G) \le |G|$ if $|G|! \in R^*$.

In this paper we prove $\beta (V(n,k),\Sigma _n) \le max\{n,k(n-1)\}$ for arbitrary commutative rings $R$ and show equality for $n=p^s$ a prime power and $R = \mathbb {Z}$ or any ring with $n\cdot 1_R=0$. Our results imply \begin{equation*} \beta (V,G)\le max\{|G|, \operatorname {rank}(V)(|G|-1)\}\end{equation*} for any ring with $|G| \in R^*$.

## References

- H. E. A. Campbell, I. Hughes, and R. D. Pollack,
*Vector invariants of symmetric groups*, Canad. Math. Bull.**33**(1990), no. 4, 391–397. MR**1091341**, DOI 10.4153/CMB-1990-064-8 - Shou-Jen Hu and Ming-chang Kang,
*Efficient generation of the ring of invariants*, J. Algebra**180**(1996), no. 2, 341–363. MR**1378534**, DOI 10.1006/jabr.1996.0071 - E. Noether,
*Der Endlichkeitssatz der Invarianten endlicher Gruppen*, Math. Ann.**77**, 89-92, (1916). - E. Noether,
*Der Endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik $p$*, Nachr. Ges. Wiss. Göttingen (1926), 28-35; reprinted in ‘Collected Papers’, pp. 485-492, Springer Verlag, Berlin (1983). - D. Richman,
*Explicit generators of the invariants of finite groups*, Adv. Math.**124**(1996), 49–76. - Larry Smith,
*E. Noether’s bound in the invariant theory of finite groups*, Arch. Math. (Basel)**66**(1996), no. 2, 89–92. MR**1367149**, DOI 10.1007/BF01273338 - Larry Smith,
*Polynomial invariants of finite groups*, Research Notes in Mathematics, vol. 6, A K Peters, Ltd., Wellesley, MA, 1995. MR**1328644**, DOI 10.1201/9781439864470 - T. Venkatarayudu,
*The $7$-$15$ problem*, Proc. Indian Acad. Sci., Sect. A.**9**(1939), 531. MR**0000001**, DOI 10.1090/gsm/058

## Additional Information

**P. Fleischmann**- Affiliation: Institute for Experimental Mathematics, University of Essen, Ellernstr. 29, 45326 Essen, Germany
- Email: peter@exp-math.uni-essen.de
- Received by editor(s): June 20, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 1703-1712 - MSC (1991): Primary 13A50
- DOI: https://doi.org/10.1090/S0002-9947-98-02064-9
- MathSciNet review: 1451600