Local spectra and individual stability of uniformly bounded $C_0$-semigroups
HTML articles powered by AMS MathViewer
- by Charles J. K. Batty, Jan van Neerven and Frank Räbiger
- Trans. Amer. Math. Soc. 350 (1998), 2071-2085
- DOI: https://doi.org/10.1090/S0002-9947-98-01919-9
- PDF | Request permission
Abstract:
We study the asymptotic behaviour of individual orbits $T(\cdot )x$ of a uniformly bounded $C_{0}$-semigroup $\{T(t) \}_{t\ge 0}$ with generator $A$ in terms of the singularities of the local resolvent $(\lambda -A)^{-1} x$ on the imaginary axis. Among other things we prove individual versions of the Arendt-Batty-Lyubich-Vũ theorem and the Katznelson-Tzafriri theorem.References
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3
- Wolfgang Arendt and Jan Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), no. 2, 412–448. MR 1147871, DOI 10.1137/0523021
- C. J. K. Batty, Asymptotic behaviour of semigroups of operators, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 35–52. MR 1285599
- C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), no. 2, 783–804. MR 1013326, DOI 10.1090/S0002-9947-1990-1013326-6
- Charles J. K. Batty, Spectral conditions for stability of one-parameter semigroups, J. Differential Equations 127 (1996), no. 1, 87–96. MR 1387258, DOI 10.1006/jdeq.1996.0062
- C.J.K. Batty, Z. Brzeźniak and D.A. Greenfield, A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum, Studia Math. 121 (1996), 167–183.
- C.J.K. Batty, J. van Neerven and F. Räbiger, Tauberian theorems and stability of solutions of the Cauchy problem, Trans. Amer. Math. Soc. 350 (1998), 2087–2103.
- Charles J. K. Batty and Vũ Quốc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), no. 2, 805–818. MR 1022866, DOI 10.1090/S0002-9947-1990-1022866-5
- R. deLaubenfels and Vũ Quốc Phóng, Stability and almost periodicity of solutions of ill-posed abstract Cauchy problems, Proc. Amer. Math. Soc. 125 (1997), no. 1, 235–241. MR 1350938, DOI 10.1090/S0002-9939-97-03575-2
- J. Esterle, E. Strouse, and F. Zouakia, Stabilité asymptotique de certains semi-groupes d’opérateurs et idéaux primaires de $L^1(\textbf {R}^+)$, J. Operator Theory 28 (1992), no. 2, 203–227 (French). MR 1273043
- David E. Evans, On the spectrum of a one-parameter strongly continuous representation, Math. Scand. 39 (1976), no. 1, 80–82. MR 430868, DOI 10.7146/math.scand.a-11645
- Fa Lun Huang, Spectral properties and stability of one-parameter semigroups, J. Differential Equations 104 (1993), no. 1, 182–195. MR 1224126, DOI 10.1006/jdeq.1993.1068
- J.-P. Kahane and Y. Katznelson, Sur les algèbres de restrictions des séries de Taylor absolument convergentes à un fermé du cercle, J. Analyse Math. 23 (1970), 185–197 (French). MR 273299, DOI 10.1007/BF02795499
- Yitzhak Katznelson, An introduction to harmonic analysis, Second corrected edition, Dover Publications, Inc., New York, 1976. MR 0422992
- Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. MR 859138, DOI 10.1016/0022-1236(86)90101-1
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Yu. I. Lyubich and Vũ Quốc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), no. 1, 37–42. MR 932004, DOI 10.4064/sm-88-1-37-42
- W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450, DOI 10.1007/BFb0074922
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Vũ Quốc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), no. 1, 74–84. MR 1144683, DOI 10.1016/0022-1236(92)90135-6
- Vu Kuok Fong and Yu. I. Lyubich, A spectral criterion for asymptotic almost periodicity for uniformly continuous representations of abelian semigroups, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 50 (1988), 38–43, ii (Russian); English transl., J. Soviet Math. 49 (1990), no. 6, 1263–1266. MR 975673, DOI 10.1007/BF02209170
Bibliographic Information
- Charles J. K. Batty
- Affiliation: St. John’s College, Oxford OX1 3JP, England
- Email: charles.batty@sjc.ox.ac.uk
- Jan van Neerven
- Affiliation: Department of Mathematics, Delft Technical University, P. O. Box 356, 2600 AJ Delft, The Netherlands
- Email: J.vanNeerven@twi.tudelft.nl
- Frank Räbiger
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Email: frra@michelangelo.mathematik.uni-tuebingen.de
- Received by editor(s): February 12, 1996
- Received by editor(s) in revised form: September 6, 1996
- Additional Notes: The work on this paper was done during a two-year stay at the University of Tübingen. Support by an Individual Fellowship from the Human Capital and Mobility Programme of the European Community is gratefully acknowledged. I warmly thank Professor Rainer Nagel and the members of his group for their hospitality (second author). It is part of a research project supported by the Deutsche Forschungsgemeinschaft DFG (third author). Work in Oxford was also supported by an EPSRC Visiting Fellowship Research Grant (first and third authors)
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2071-2085
- MSC (1991): Primary 47D03
- DOI: https://doi.org/10.1090/S0002-9947-98-01919-9
- MathSciNet review: 1422890