Tauberian theorems and stability of solutions of the Cauchy problem
HTML articles powered by AMS MathViewer
- by Charles J. K. Batty, Jan van Neerven and Frank Räbiger
- Trans. Amer. Math. Soc. 350 (1998), 2087-2103
- DOI: https://doi.org/10.1090/S0002-9947-98-01920-5
- PDF | Request permission
Abstract:
Let $f : \mathbb {R}_{+} \to X$ be a bounded, strongly measurable function with values in a Banach space $X$, and let $iE$ be the singular set of the Laplace transform $\widetilde f$ in $i\mathbb {R}$. Suppose that $E$ is countable and $\alpha \left \| \int _{0}^{\infty }e^{-(\alpha + i\eta ) u} f(s+u) du \right \| \to 0$ uniformly for $s\ge 0$, as $\alpha \searrow 0$, for each $\eta$ in $E$. It is shown that \[ \left \| \int _{0}^{t} e^{-i\mu u} f(u) du - \widetilde f(i\mu ) \right \| \to 0\] as $t\to \infty$, for each $\mu$ in $\mathbb {R} \setminus E$; in particular, $\|f(t)\| \to 0$ if $f$ is uniformly continuous. This result is similar to a Tauberian theorem of Arendt and Batty. It is obtained by applying a result of the authors concerning local stability of bounded semigroups to the translation semigroup on $BUC(\mathbb {R}_{+}, X)$, and it implies several results concerning stability of solutions of Cauchy problems.References
- G. R. Allan, A. G. O’Farrell, and T. J. Ransford, A Tauberian theorem arising in operator theory, Bull. London Math. Soc. 19 (1987), no. 6, 537–545. MR 915430, DOI 10.1112/blms/19.6.537
- W. Arendt and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc. 306 (1988), no. 2, 837–852. MR 933321, DOI 10.1090/S0002-9947-1988-0933321-3
- Wolfgang Arendt and Jan Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), no. 2, 412–448. MR 1147871, DOI 10.1137/0523021
- B. Basit, Harmonic analysis and asymptotic behavior of solutions to the abstract Cauchy problem, Semigroup Forum 54 (1997) 58–74.
- C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), no. 2, 783–804. MR 1013326, DOI 10.1090/S0002-9947-1990-1013326-6
- C. J. K. Batty, Some Tauberian theorems related to operator theory, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 21–34. MR 1285598
- C. J. K. Batty, Asymptotic behaviour of semigroups of operators, Functional analysis and operator theory (Warsaw, 1992) Banach Center Publ., vol. 30, Polish Acad. Sci. Inst. Math., Warsaw, 1994, pp. 35–52. MR 1285599
- Charles J. K. Batty, Spectral conditions for stability of one-parameter semigroups, J. Differential Equations 127 (1996), no. 1, 87–96. MR 1387258, DOI 10.1006/jdeq.1996.0062
- C.J.K. Batty, J. van Neerven and F. Räbiger, Local spectra and individual stability of uniformly bounded $C_{0}$-semigroups, Trans. Amer. Math. Soc. 350 (1998), 2071–2085.
- Charles J. K. Batty and Vũ Quốc Phóng, Stability of individual elements under one-parameter semigroups, Trans. Amer. Math. Soc. 322 (1990), no. 2, 805–818. MR 1022866, DOI 10.1090/S0002-9947-1990-1022866-5
- Ralph deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Mathematics, vol. 1570, Springer-Verlag, Berlin, 1994. MR 1290783, DOI 10.1007/BFb0073401
- R. deLaubenfels and Vũ Quốc Phóng, Stability and almost periodicity of solutions of ill-posed abstract Cauchy problems, Proc. Amer. Math. Soc. 125 (1997), no. 1, 235–241. MR 1350938, DOI 10.1090/S0002-9939-97-03575-2
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III: Spectral operators, Pure and Applied Mathematics, Vol. VII, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1971. With the assistance of William G. Bade and Robert G. Bartle. MR 0412888
- J. Esterle, E. Strouse, and F. Zouakia, Stabilité asymptotique de certains semi-groupes d’opérateurs et idéaux primaires de $L^1(\textbf {R}^+)$, J. Operator Theory 28 (1992), no. 2, 203–227 (French). MR 1273043
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Fa Lun Huang, Spectral properties and stability of one-parameter semigroups, J. Differential Equations 104 (1993), no. 1, 182–195. MR 1224126, DOI 10.1006/jdeq.1993.1068
- A.E. Ingham, On Wiener’s method in Tauberian theorems, Proc. London Math. Soc. 38 (1935), 458–480.
- Shmuel Kantorovitz, The Hille-Yosida space of an arbitrary operator, J. Math. Anal. Appl. 136 (1988), no. 1, 107–111. MR 972586, DOI 10.1016/0022-247X(88)90118-7
- Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. MR 859138, DOI 10.1016/0022-1236(86)90101-1
- J. Korevaar, On Newman’s quick way to the prime number theorem, Math. Intelligencer 4 (1982), no. 3, 108–115. MR 684025, DOI 10.1007/BF03024240
- S. G. Kreĭn, G. I. Laptev, and G. A. Cvetkova, The Hadamard correctness of the Cauchy problem for an evolution equation, Dokl. Akad. Nauk SSSR 192 (1970), 980–983 (Russian). MR 0265728
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Yu. I. Lyubich and Vũ Quốc Phóng, Asymptotic stability of linear differential equations in Banach spaces, Studia Math. 88 (1988), no. 1, 37–42. MR 932004, DOI 10.4064/sm-88-1-37-42
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Wolfgang M. Ruess and Vũ Quốc Phóng, Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations 122 (1995), no. 2, 282–301. MR 1355893, DOI 10.1006/jdeq.1995.1149
- Olof J. Staffans, On asymptotically almost periodic solutions of a convolution equation, Trans. Amer. Math. Soc. 266 (1981), no. 2, 603–616. MR 617554, DOI 10.1090/S0002-9947-1981-0617554-5
- E.C. Titchmarsh, The theory of functions, Oxford Univ. Press, Oxford, 1932.
- Vũ Quốc Phóng, Theorems of Katznelson-Tzafriri type for semigroups of operators, J. Funct. Anal. 103 (1992), no. 1, 74–84. MR 1144683, DOI 10.1016/0022-1236(92)90135-6
- Vũ Quốc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semi-dynamical systems, J. Differential Equations 105 (1993), no. 1, 30–45. MR 1237976, DOI 10.1006/jdeq.1993.1081
Bibliographic Information
- Charles J. K. Batty
- Affiliation: St. John’s College, Oxford OX1 3JP, England
- Email: charles.batty@sjc.ox.ac.uk
- Jan van Neerven
- Affiliation: Department of Mathematics, Delft Technical University, P.O. Box 356, 2600 AJ Delft, The Netherlands
- Email: J.vanNeerven@twi.tudelft.nl
- Frank Räbiger
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Email: frra@michelangelo.mathematik.uni-tuebingen.de
- Received by editor(s): February 12, 1996
- Received by editor(s) in revised form: September 6, 1996
- Additional Notes: The work on this paper was done during a two-year stay at the University of Tübingen. Support by an Individual Fellowship from the Human Capital and Mobility Programme of the European Community is gratefully acknowledged. I warmly thank Professor Rainer Nagel and the members of his group for their hospitality (second author). It is part of a research project supported by the Deutsche Forschungsgemeinschaft DFG (third author). Work in Oxford was also supported by an EPSRC Visiting Fellowship Research Grant (first and third authors).
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2087-2103
- MSC (1991): Primary 44A10; Secondary 47D06, 47D03
- DOI: https://doi.org/10.1090/S0002-9947-98-01920-5
- MathSciNet review: 1422891