Carleson conditions for asymptotic weights
HTML articles powered by AMS MathViewer
- by Michael Brian Korey
- Trans. Amer. Math. Soc. 350 (1998), 2049-2069
- DOI: https://doi.org/10.1090/S0002-9947-98-01931-X
- PDF | Request permission
Abstract:
The doubling and $A_\infty$ conditions are characterized in terms of convolution with rapidly decreasing kernels. The Carleson-measure criterion for $A_\infty$ of Fefferman, Kenig, and Pipher is extended to the case when all bounds become optimally small in the asymptotic limit.References
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304
- Stephen M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253–272. MR 1124164, DOI 10.1090/S0002-9947-1993-1124164-0
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- R. A. Fefferman, C. E. Kenig, and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) 134 (1991), no. 1, 65–124. MR 1114608, DOI 10.2307/2944333
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Sergei V. Hruščev, A description of weights satisfying the $A_{\infty }$ condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), no. 2, 253–257. MR 727244, DOI 10.1090/S0002-9939-1984-0727244-4
- David S. Jerison and Carlos E. Kenig, The logarithm of the Poisson kernel of a $C^{1}$ domain has vanishing mean oscillation, Trans. Amer. Math. Soc. 273 (1982), no. 2, 781–794. MR 667174, DOI 10.1090/S0002-9947-1982-0667174-2
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- M. B. Korey, Ideal weights: doubling and absolute continuity with asymptotically optimal bounds, Ph.D. Thesis, University of Chicago, 1995.
- Benjamin Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. MR 350297, DOI 10.4064/sm-49-2-101-106
- S. C. Power, Vanishing Carleson measures, Bull. London Math. Soc. 12 (1980), no. 3, 207–210. MR 572103, DOI 10.1112/blms/12.3.207
- Hans Martin Reimann and Thomas Rychener, Funktionen beschränkter mittlerer Oszillation, Lecture Notes in Mathematics, Vol. 487, Springer-Verlag, Berlin-New York, 1975 (German). MR 0511997
- Donald Sarason, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405. MR 377518, DOI 10.1090/S0002-9947-1975-0377518-3
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
Bibliographic Information
- Michael Brian Korey
- Affiliation: Max-Planck-Arbeitsgruppe “Partielle Differentialgleichungen und Komplexe Analysis”, Universität Potsdam, 14415 Potsdam, Germany
- Address at time of publication: Institut für Mathematik, Universität Potsdam, 14415 Potsdam, Germany
- Email: mike@mpg-ana.uni-potsdam.de
- Received by editor(s): December 28, 1995
- Received by editor(s) in revised form: September 5, 1996
- Additional Notes: Supported by the Max-Planck-Gesellschaft. This work is a revised form of part of the author’s dissertation, which was written under Professor Carlos E. Kenig at the University of Chicago. Another portion of the dissertation [M. B. Korey, Ideal weights: doubling and absolute continuity with asymptotically optimal bounds, Ph.D. Thesis, University of Chicago, 1995] is to appear in J. Fourier Anal. Appl.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2049-2069
- MSC (1991): Primary 42B25; Secondary 26D15, 31B35
- DOI: https://doi.org/10.1090/S0002-9947-98-01931-X
- MathSciNet review: 1422902