Minimizing the Laplacian of a function squared with prescribed values on interior boundaries- Theory of polysplines
HTML articles powered by AMS MathViewer
- by Ognyan Iv. Kounchev
- Trans. Amer. Math. Soc. 350 (1998), 2105-2128
- DOI: https://doi.org/10.1090/S0002-9947-98-01961-8
- PDF | Request permission
Abstract:
In this paper we consider the minimization of the integral of the Laplacian of a real-valued function squared (and more general functionals) with prescribed values on some interior boundaries $\Gamma$, with the integral taken over the domain D. We prove that the solution is a biharmonic function in $D$ except on the interior boundaries $\Gamma$, and satisfies some matching conditions on $\Gamma$. There is a close analogy with the one-dimensional cubic splines, which is the reason for calling the solution a polyspline of order 2, or biharmonic polyspline. Similarly, when the quadratic functional is the integral of $(\Delta ^{q}f)^{2}, q$ a positive integer, then the solution is a polyharmonic function of order $2q, \Delta ^{2q}f(x) = 0,$ for $x \in D\setminus \Gamma$, satisfying matching conditions on $\Gamma$, and is called a polyspline of order $2q$. Uniqueness and existence for polysplines of order $2q$, provided that the interior boundaries $\Gamma$ are sufficiently smooth surfaces and $\partial D \subseteq \Gamma$, is proved. Three examples of data sets $\Gamma$ possessing symmetry are considered, in which the computation of polysplines is reduced to computation of one-dimensional $L-$splines.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and their applications, Academic Press, New York-London, 1967. MR 0239327
- Nachman Aronszajn, Thomas M. Creese, and Leonard J. Lipkin, Polyharmonic functions, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1983. Notes taken by Eberhard Gerlach; Oxford Science Publications. MR 745128
- J.C. Briggs, Machine contouring using minimum curvature, Geophysics, 39 (1974), 39-48.
- Jean Duchon, Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 10 (1976), no. R-3, 5–12 (French, with English summary). MR 0470565
- Stephen D. Fisher and Joseph W. Jerome, Minimum norm extremals in function spaces, Lecture Notes in Mathematics, Vol. 479, Springer-Verlag, Berlin-New York, 1975. With applications to classical and modern analysis. MR 0442780
- P. Gonzalez-Casanova and R. Alvarez, Splines in geophysics, Geophysics, 50, No. 12 (1985), 2831-2848.
- Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1985. Pseudodifferential operators. MR 781536
- W. Haussmann, O.I. Kounchev, Peano theorem for linear functionals vanishing on polyharmonic functions, In: Approximation Theory VIII, Vol. 1, Charles Chui and L. Schumaker (eds.), World Scientific Publishing Co., 1995, pp. 233-240.
- O. Iv. Kounchev, Definition and basic properties of polysplines, C. R. Acad. Bulgare Sci. 44 (1991), no. 7, 9–11. MR 1144142
- O.I. Kounchev, Multivariate splines constructed through biharmonic functions, In: Abstracts presented at the Meeting of AMS, Tampa, March-1991, 12 (1991), No. 3, 865-41-197.
- O.I. Kounchev, Theory of polysplines - minimizing the Laplacian of a function squared with prescribed values on interior boundaries with singularities, II, University of Duisburg, preprint SM-DU-212,1993.
- O. I. Kounchev, Splines constructed by pieces of polyharmonic functions, In: Wavelets, Images and Surface Fitting, Eds. P.-J. Laurent et al., AK Peters, Mass., 1994, pp. 319-326.
- O.I. Kounchev, Minimizing the integral of the Laplacian of a function suqared with prescribed values on interior boundaries - theory of polysplines, I, University of Duisburg, preprint SM-DU-211,1993.
- Pierre-Jean Laurent, Approximation et optimisation, Collection Enseignement des Sciences, No. 13, Hermann, Paris, 1972 (French). MR 0467080
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 2, Travaux et Recherches Mathématiques, No. 18, Dunod, Paris, 1968 (French). MR 0247244
- V. N. Rusak, Best rational approximations of convolution with Weyl kernel, and functions in $L_p$, Dokl. Akad. Nauk BSSR 34 (1990), no. 8, 681–683 (Russian, with English summary). MR 1087168
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
- Larry L. Schumaker, Spline functions: basic theory, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR 606200
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- M. H. F. Smith, P. Wessel, Gridding with continuous curvature splines in tension, Geophysics, 55 (1990), No. 3, 293-305.
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Grace Wahba, Surface fitting with scattered noisy data on Euclidean $D$-space and on the sphere, Rocky Mountain J. Math. 14 (1984), no. 1, 281–299. Surfaces (Stanford, Calif., 1982). MR 736179, DOI 10.1216/RMJ-1984-14-1-281
Bibliographic Information
- Ognyan Iv. Kounchev
- Affiliation: Institute of Mathematics, Bulgarian Academy of Sciences, Acad. G. Bonchev St. 8, 1113 Sofia, Bulgaria; Department of Mathematics, University of Duisburg, Lotharstr. 65, 4100 Duisburg, Germany
- Email: kounchev@math.uni-duisburg.de
- Received by editor(s): January 19, 1993
- Received by editor(s) in revised form: September 17, 1996
- Additional Notes: Partially sponsored by the Alexander von Humboldt Foundation and by the NFSR of the Bulgarian Ministery of Education and Science under grant number MM21/91
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2105-2128
- MSC (1991): Primary 35J40; Secondary 41A15, 65D07
- DOI: https://doi.org/10.1090/S0002-9947-98-01961-8
- MathSciNet review: 1422610