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LINKAGE AND SUMS OF IDEALS

MARK R. JOHNSON

Abstract. It is shown (under mild conditions) that the sum of transversal
ideals in a regular local ring cannot lie in the linkage class of a complete
intersection. For a sum of geometrically linked Cohen-Macaulay ideals, we
compute the depths of the conormal module and the first Koszul homology. As
applications, we construct general examples of ideals which are strongly Cohen-
Macaulay, strongly nonobstructed but not in the linkage class of a complete
intersection, and Gorenstein ideals which are strongly nonobstructed but not
syzygetic.

Introduction

If R is a local Gorenstein ring, two R-ideals I and J are said to be linked (written
I ∼ J) if there is a regular sequence α = α1, . . . , αg in I ∩ J with J = (α) : I and
I = (α) : J . This notion is due to Peskine and Szpiro [21], although it was essentially
known classically. It turns out to be a very useful approach towards classifying ideals
(and algebraic varieties). Indeed, we obtain an equivalence relation by declaring
that I and J belong to the same linkage class when there is a sequence of links

I = I0 ∼ I1 ∼ · · · ∼ In = J,

joining I and J . From this point of view, the simplest ideals are the licci ideals,
those in the linkage class of a complete intersection; they include all perfect ideals
of grade 2 ([1], [5]), and all perfect Gorenstein ideals of grade 3 ([33]). Thus licci
ideals are seen to generalize these well-known examples to higher codimensions.
Moreover, due to the work of various authors ([3], [4], [6], [8], [10], [11], [13], [14],
[15], [18], [26], [28]), most notably Huneke and Ulrich, licci ideals enjoy some very
good properties. For instance, any licci ideal is strongly Cohen-Macaulay ([8])
and strongly nonobstructed ([3], [4]). (We refer the reader to Section 1 for any
undefined terminology.) Individually, these properties are important in the study
of blowing-up rings ([7]), and in deformation theory ([3], [6]). Despite this fact,
most of the known examples of strongly nonobstructed ideals, or ideals say whose
entire linkage class is strongly Cohen-Macaulay, happen to be licci. It is of interest
to obtain additional methods of producing strongly Cohen-Macaulay or strongly
nonobstructed ideals to which one may apply the aforementioned theories. There
is also the question as to what extent are licci ideals possibly characterized by these
properties.

In trying to discover new ideals, it is natural to consider a sum I + J of two
ideals, I and J , having the requisite properties. In this work, we consider two
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important cases when the sum is known to be Cohen-Macaulay whenever the ideals
in question are:

(i) I and J are transversal (and R is regular),
(ii) I and J are geometrically linked ideals.
In case (i), Huneke [9] used the vanishing of Tor to obtain a Künneth formula

for the Koszul homology of I+J in terms of that of I and J . In particular, if I and
J are transversal and are both strongly Cohen-Macaulay, then so is I + J . Similar
remarks hold for the property of being strongly nonobstructed. Thus, if we take
I and J to be transversal licci ideals, then the sum I + J is both strongly Cohen-
Macaulay and strongly nonobstructed. (The prototypical example of a transversal
sum to bear in mind is the defining ideal of the product of the two affine varieties.)
We are able to show the surprising result that this ideal is, however, essentially
never licci: If I and J are transversal licci ideals, then I + J is licci only if either
I or J is a complete intersection (Theorem 2.6). This method produces the first
known examples of nonlicci ideals which have these good homological properties
only previously observed for the class of licci ideals. For example, we obtain, in a
regular local ring R, strongly nonobstructed prime ideals of grade 5 whose entire
linkage class is strongly Cohen-Macaulay, and strongly Cohen-Macaulay Gorenstein
primes I of grade 6 with TorR• (R/I,R/I) Cohen-Macaulay, which are not licci.
It thus appears that licci ideals cannot be easily characterized by these sorts of
homological properties.

In case (ii), where I and J are geometrically linked Cohen-Macaulay ideals,
Peskine and Szpiro [21] observed that the sum K = I + J is a Gorenstein ideal
with grade K = grade I + 1. This is a nontrivial way to produce Gorenstein ideals
from Cohen-Macaulay ones; it was essentially used by Kustin and Miller [17] in
their study of Gorenstein ideals of grade 4, and more recently was studied in its
own right by Ulrich [26]. Unlike the previous case (i) however, K is licci whenever
I is ([26, 2.1]). It is still interesting to know when K, if not licci, is strongly
Cohen-Macaulay and/or strongly nonobstructed (the latter in this case being just
the Cohen-Macaulayness of the conormal module K/K2). In [26], Ulrich proves
that K/K2 and H1(K) are Cohen-Macaulay whenever I is strongly nonobstructed
and H1(I) and H1(J) are Cohen-Macaulay. It is often useful, however, to relax
the Cohen-Macaulayness of the Koszul homology to a weaker depth estimate on
the powers of the ideal. Moreover, certain depth conditions force many of the
important consequences of the strongly Cohen-Macaulay property ([27]). We are
able to compute the depth of the modules K/K2 and H1(K) directly in terms of
the depths of corresponding modules of the linked ideals I and J (Theorem 3.3).
As one application of this result, we are able to easily construct in abundance, in
any grade at least 5, Gorenstein prime ideals which are strongly nonobstructed, but
not syzygetic. One such example is given in [26], but our method also makes clear
why such examples should exist. Finally, we apply these results (in Example 3.10)
to verify that a well-known example already had this property.

The results of this paper were obtained (in a slightly weaker form) in the author’s
Ph.D. dissertation at Michigan State University. He is grateful to his advisor Bernd
Ulrich for his guidance.

1. Background on linkage

In this section we recall some basic notions and results that we will use through-
out the paper.
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Let R be a Noetherian local ring and let I be an (proper) R-ideal. By ν(I) we
denote the minimal number of generators of I, and d(I) = ν(I) − grade I is the
deviation. If d(I) = 0 (d(I) ≤ 1), then I is a complete intersection (an almost
complete intersection, respectively). One says that I satisfies (CIk) if Ip is a com-
plete intersection for every p ∈ V (I) with dim(R/I)p ≤ k,and that I satisfies G∞ if
ν(Ip) ≤ dimRp for every p ∈ V (I). An ideal is generically a complete intersection
if it is unmixed and satisfies (CI0). For an R-module M , we let Si(M) denote the
i-th symmetric power of M , and let τ denote the torsion submodule of M . If X
denotes a finite set of variables over R, R[X ] denotes the polynomial ring over R,
while R(X) = R[X ]mR[X], where m is the maximal ideal of R.

Let R be a local Cohen-Macaulay ring. An ideal I is Cohen-Macaulay or Goren-
stein if R/I has this property, and is perfect if it is Cohen-Macaulay and has finite
projective dimension. We denote by ωR the canonical module of R, and by r(R)
the type of R.

Definition 1.1 ([21]). Let R be a (not necessarily local) Gorenstein ring and let
I and J be R-ideals.

(a) I and J are linked, written I ∼ J , if there is an R-regular sequence α =
α1, . . . , αg in I ∩ J such that J = (α) : I and I = (α) : J .

(b) I and J are geometrically linked if I and J are linked and ht I + J > g.

It follows that two linked ideals are unmixed and of the same grade g. In addition,
I and J are geometrically linked if and only if they are linked and have no common
minimal primes. In this case one has that I ∩ J = (α), i.e., V (α) is the scheme-
theoretic union of V (I) and V (J), and hence that α generates I and J generically;
in particular, I and J are generically a complete intersection.

Proposition 1.2 ([21]). Let R be a (not necessarily local) Gorenstein ring, let I
be a unmixed R-ideal, let α be a maximal regular sequence with (α) $ I and put
J = (α) : I.

(a) I = (α) : J (i.e., I and J are linked).
(b) I is Cohen-Macaulay (perfect) if and only if J is Cohen-Macaulay (perfect).
(c) Let R be local and I be Cohen-Macaulay. Then ωR/I ∼= J/(α). In particular,

r(R/I) = ν(J/(α)).

Definition 1.3. Let R be a local Gorenstein ring.

(a) Two R-ideals I and J are in the same linkage class if there exists a sequence
of links I = I0 ∼ I1 ∼ · · · ∼ In = J . If n is even, I and J are in the same
even linkage class (or are evenly linked). If n = 2, then I and J are doubly
linked.

(b) An R-ideal is licci if it is in the linkage class of a complete intersection ideal.

Note that by Proposition 1.2b, licci ideals are perfect. We recall some important
invariants of the linkage class.

Let I = (f1, . . . , fn) be an ideal. By Hi(I) we denote the i-th homology module
of the Koszul complex K•(f1, . . . , fn). For an integer k, the property that Hi(I) is
Cohen-Macaulay for 0 ≤ i ≤ k is independent of the generating set ([8, 1.5]).

Definition 1.4 ([9]). Let R be a local Cohen-Macaulay ring. An R-ideal I is
strongly Cohen-Macaulay if Hi(I) is Cohen-Macaulay for every i.

Lemma 1.5 ([8]). Let R be a local Cohen-Macaulay ring, let I = (f1, . . . , fn) be
an R-ideal with f1 R-regular, and let “—” denote reduction modulo f1.
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(a) There is an exact sequence

0 → Hi(I) → Hi(I) → Hi−1(I) → 0

for every i ≥ 0.
(b) I is strongly Cohen-Macaulay if and only if I is strongly Cohen-Macaulay.

A weaker condition on the Koszul homology is also useful. We say that I is
syzygetic if the natural map S2(I) → I2 is an isomorphism, or equivalently if the
natural sequence

0 → H1(I) → ⊕R/I → I/I2 → 0(1.6)

is exact ([22, 1.2]). It follows that if I is generically a complete intersection, then I
is syzygetic if and only if H1(I) is R/I-torsion free.

Definition 1.7 ([6]). Let R be a local Gorenstein ring. An R-ideal I is strongly
nonobstructed if I/I2 ⊗R/I ωR/I is Cohen-Macaulay.

Strong Cohen-Macaulayness plays an important role in the theory of blowing-
up rings ([7]) and in the study of residual intersections ([9], [13]). On the other
hand, the notion of being strongly nonobstructed arises from deformation the-
ory ([3], [6]): If the R-ideal I is strongly nonobstructed and generically a com-
plete intersection, then one obtains the vanishing of the cotangent cohomology
T 2((R/I)/R) ∼= Ext1R/I(I/I

2, R/I) ∼= Ext1R/I(I/I
2 ⊗R/I ωR/I , ωR/I).

Theorem 1.8 ([8]). Let R be a local Cohen-Macaulay ring and let I and J be R-
ideals which are evenly linked. Then I is strongly Cohen-Macaulay if and only if J
is strongly Cohen-Macaulay.

Theorem 1.9 ([3], [4]). Let R be a local Gorenstein ring, and let I and J be linked
R-ideals. Suppose that either I is perfect or that I is Cohen-Macaulay and the link
I ∼ J is geometric. Then I is strongly nonobstructed if and only if J is strongly
nonobstructed.

(A proof in the geometric case also appears in the recent book [30, 4.2.12].)
The two previous results thus imply that any licci ideal is strongly nonobstructed

and (its entire linkage class is) strongly Cohen-Macaulay (as any complete inter-
section is linked to itself). Linkage provides an abundance of examples of ideals
having these properties. We will produce some new ones in the next section. We
will need some further notions.

Definition 1.10 ([11]). Let (R, I) and (S, J) be pairs, where R and S are Noe-
therian local rings and I ⊂ R, J ⊂ S are ideals, or I = R or J = S.

(a) (R, I) and (S, J) are isomorphic, written (R, I) ∼= (S, J), if there is an iso-
morphism ϕ : R→ S with ϕ(I) = J .

(b) (S, J) is a deformation of (R, I) if there is a sequence x = x1, . . . , xn in S,
regular on S and S/J , such that (S/(x), J + (x)/(x)) ∼= (R, I).

(c) (S, J) is essentially a deformation of (R, I) if there is a sequence of pairs
(Si, Ji), 1 ≤ i ≤ n, with (S1, J1) = (R, I), (Sn, Jn) = (S, J), such that for 1 ≤ i ≤
n− 1, one of the following conditions is satisfied:

(i) (Si+1, Ji+1) = ((Si)p, (Ji)p) for some p ∈ SpecSi;
(ii) (Si+1, Ji+1) is a deformation of (Si, Ji);
(iii) (Si+1(X), Ji+1Si+1(X)) ∼= (Si(Y ), JiSi(Y )) for some finite sets of variables

X over Si+1 and Y over Si.
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Lemma 1.11 ([14, proof of 2.1]). Let R be a local Cohen-Macaulay ring, let I be
an R-ideal which is generically a complete intersection, let (S, J) be a deformation
of (R, I) and let k be an integer. Then Hi(I) is Cohen-Macaulay for 0 ≤ i ≤ k if
and only if Hi(J) is Cohen-Macaulay for 0 ≤ i ≤ k. In particular, I is strongly
Cohen-Macaulay if and only if J is strongly Cohen-Macaulay.

The next result shows that links deform well. In particular, a deformation of a
licci ideal is licci:

Lemma 1.12 ([11, 2.16]). Let R be a local Gorenstein ring, let I be a Cohen-
Macaulay R-ideal, let I = I0 ∼ I1 ∼ · · · ∼ In be a sequence of links, and let (S, J)
be a deformation of (R, I). Then there is a sequence of links J = J0 ∼ · · · ∼ Jn in
S such that (S, Ji) is a deformation of (R, Ii) for every 0 ≤ i ≤ n.

We define next the most general link of an ideal.

Definition 1.13 ([11]). Let R be a Gorenstein ring, let I be an unmixed R-ideal
of grade g > 0, and let f1, . . . , fn be any generating set of I. Let X be a generic
g × n matrix of variables over R and let α = α1, . . . , αg denote the R[X ]-regular
sequence defined by (α)t = X · (f)t. Then L1(f) = (α)R[X ] : IR[X ] is the first
generic link of I.

The first generic link L1(f) (or rather, the pair (R[X ], L1(f))) is independent of

the generating set, up to isomorphism of pairs (after adjoining variables) ([11, 2.11]).
Thus we write L1(I) = L1(f) and hence we may iterate this process and define the

i-th generic link Li(I) by Li(I) = L1(Li−1(I)) for i ≥ 1. (We set L0(I) = I.)
Hence we obtain a canonical sequence of links IS ∼ L1(I)S ∼ · · · ∼ Ln(I)S in
some polynomial extension S of R. In addition, if I is generically a complete
intersection, then the link IR[X ] ∼ L1(I) is geometric ([10, 2.5]).

The following theorem shows that generic links are the prototypical sequence of
links:

Theorem 1.14 ([11, 2.17]). Let (R,m) be a local Gorenstein ring, let I be a Cohen-
Macaulay R-ideal with grade I > 0 and let I = I0 ∼ I1 ∼ · · · ∼ In be a sequence of
links in R = R0. For 1 ≤ i ≤ n, let Li(I) ⊂ Ri be i-th generic links, where Ri is a
polynomial ring over Ri−1, and put S = Rn. Then there exists a prime ideal q in
S with m ⊂ q, such that (Sq, Li(I)Sq) is a deformation of (R, Ii) for 1 ≤ i ≤ n.

Finally, we will need to utilize one of the main results of [11], which gives a local
structure theorem for licci ideals. We actually use a slightly improved version in
[25]:

Theorem 1.15 ([25, 2.6]). Let R be a regular local ring and let I be a licci R-ideal
which is not a complete intersection.

(a) If I is Gorenstein, then (R, I) has essentially a deformation (S1, J1) with
S1/J1

∼= (P [X ]/Pf4(X))(mp,X), where P is a regular local ring, and X is a generic
alternating 5× 5 matrix.

(b) If I is not Gorenstein, then (R, I) has essentially a deformation (S2, J2) with
S2/J2

∼= (P [X ]/I2(X))(mp,X), where P is a regular local ring and X is a generic
2× 3 matrix.

2. Sums of transversal ideals

In this section R denotes a regular local ring containing its residue field k. Recall
that two R-ideals I and J are transversal if TorR1 (R/I,R/J) = 0, i.e., if I∩J = IJ .



1918 MARK R. JOHNSON

By the vanishing of Tor ([2] or [19]), the sum I +J is then a Cohen-Macaulay ideal
whenever I and J are.

Now if R is complete, i.e., R = k[[x1, . . . , xn]], then the pair (R, I + J) has a

deformation (S, Ĩ + J̃), where S = R[[y1, . . . , yn]], Ĩ = IS, and J̃ is extended from
k[[y1, . . . , yn]]. In this way, we are essentially reduced to studying the complete
tensor product R/I⊗̂kR/J of the complete local k-algebras R/I and R/J .

We begin with an auxiliary construction, which will be useful in studying the
linkage class of a transversal sum.

Definition 2.1. Let I ⊂ k[[X ]] and J ⊂ k[[Y ]] be unmixed ideals and let α be a
maximal regular sequence inside I, and let β be a maximal regular sequence inside

J , with (α) $ I and (β) $ J . The R = k[[X,Y ]]-ideal L = (α, β)R : (IR + JR) is
a transversal link of I and J .

By Proposition 1.2a, L is linked to IR+JR by the sequence α, β. In particular,
any two transversal links of I and J are doubly linked, and thus share any property
preserved under even linkage. Thus we will usually ignore the dependency of the
transversal link on the chosen sequences, and write L for some transversal link of
I and J .

Remark 2.2. With the notation of Definition 2.1, if I and J are generically a com-
plete intersection, then the link IR+ JR ∼ L may be chosen to be geometric.

Proof. As I and J are generically a complete intersection, there exist geometric links

I
α∼ I1 in k[[X ]] and J

β∼ J1 in k[[Y ]], thus ht I + I1 > ht I and htJ + J1 > htJ .
But

L = (α, β)R : (IR + JR)

= (α, β)R : IR ∩ (α, β)R : JR

= ((α)R : IR, β) ∩ (α, (β)R : JR)

= (((α) : I)R, β) ∩ (α, ((β) : J)R)

= (I1R, β) ∩ (α, J1R)

= (α, β)R+ I1R · J1R.

It follows that the sum (IR + JR) + L = IR + JR + I1R · J1R has height ≥
min{ht(I+I1)+htJ, ht(J+J1)+ht I} > ht IR+JR, and thus the link IR+JR ∼ L
is geometric.

We next remark on the number of generators of any transversal link.

Remark 2.3. With the assumption of Remark 2.2, assume in addition that I and
J are Cohen-Macaulay. Then d(L) = r(R/IR) · r(R/JR).

Proof. As r(R/IR+JR) = r(R/IR) ·r(R/JR), the result follows from Proposition
1.2c once we have shown that d(L) = ν(L/(α, β)). But if m denotes the maximal
ideal of R, this holds since (α, β) + mL/mL ∼= (α, β)/(m(α, β) + (α, β) ∩mI1R ·
J1R) = (α, β)/m(α, β), as (α, β)∩mI1R ·J1R ⊂ (α, β)∩ I1R ·J1R = (α, β)∩ I1R∩
J1R = (α)J1R+ (β)I1R ⊂ m(α, β).

The next result contains the crucial properties of the transversal link that we
will need.
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Lemma 2.4. Let I ⊂ k[[x1, . . . , xn]] and J ⊂ k[[y1, . . . , yn]] be Cohen-Macaulay
ideals which are generically a complete intersection, and let L be a geometric
transversal link of I and J .

(a) If I and J are linked to ideals whose first Koszul homology H1 is Cohen-
Macaulay, then depthR/L2 ≥ dimR/L− 1.

(b) If I and J are not Gorenstein, then L is not syzygetic.
(c) If I is Gorenstein and J is geometrically linked to a strongly Cohen-Macaulay

ideal J1 with J + J1/J satisfying G∞, then L is strongly Cohen-Macaulay.

Proof. Let (α) ⊂ I and (β) ⊂ J be the regular sequences used to define L, and put
I1 = (α) : I and J1 = (β) : J . Then I ∼ I1 and J ∼ J1 (Proposition 1.2a), and

L = (α, β)R+ I1R ·J1R. We will denote by “—” reduction modulo the ideal (α, β).
We first show (a). By assumption, I1 and J1 are doubly linked to ideals with

H1 Cohen-Macaulay, hence H1(I1) and H1(J1) are Cohen-Macaulay by Theorem
1.8. It follows that H1(I1R) and H1(J1R) are also Cohen-Macaulay by Lemma
1.5. In particular, I1 and J1 are syzygetic. Now the standard sequence (1.6) shows

that depthR/I1R
2 ≥ dimR/I1R − 1 and depthR/J1R

2 ≥ dimR/J1R − 1. As

L2
= I1R

2 ∩ J1R
2
, there is an exact sequence

0 → R/L2 → R/I1R
2 ⊕ R/J1R

2 → R/I1R
2
+ J1R

2 → 0.

Notice that there are isomorphisms

R/I1R
2

+ J1R
2 ∼= R/(α, I2

1 )R+ (β, J2
1 )

∼= k[[X ]]/(α, I2
1 )⊗̂kk[[Y ]]/(β, J2

1 ),

and thus by the previous estimates this module has depth ≥ dim k[[X ]]/I1 − 1 +
dim k[[Y ]]/J1 − 1 = dimR/L − 2. Thus by the previous sequence, one has that

depthR/L2 ≥ dimR/L− 1. Finally, we are done using the sequence

0 → ⊕R/L → L/L2 → L/L2 → 0,

which is exact as L is generated generically by the regular sequence α, β (as the
link L ∼ IR+ JR is geometric).

To prove (b), it is enough to show by Lemma 1.5 that L is not syzygetic, as L
is generically a complete intersection. But L = I1R · J1R, and as neither I nor J is
Gorenstein, by Proposition 1.2c, neither I1R nor J1R is principal. In this case, L,
being a product, admits obvious quadratic relations on its generators, and hence is
not syzygetic.

It remains to show (c). It is enough to show that L is strongly Cohen-Macaulay.
By Proposition 1.2c we have that I1R = (a) is principal, and that J1R satisfies
the condition G∞. Thus L = a · J1R also satisfies G∞. Now J1R is strongly
Cohen-Macaulay, and thus from the approximation complexes ([7, proof of 4.6])

depthR/J1R
j ≥ dimR/J1R− j + 1,

for j ≥ 1. On the other hand, I1R is an almost complete intersection which is
generically a complete intersection, and in particular is strongly Cohen-Macaulay

and satisfies G∞. Thus by [14, 2.7], depthR/I1R
j ≥ dimR/I1R−1, for j ≥ 1. But

now the analogue of the sequence of (a)

0 → R/Lj → R/I1R
j ⊕R/J1R

j → R/I1R
j
+ J1R

j → 0
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shows that depthR/Li ≥ dimR/L− j+1 for every j. The result now follows from
[27, 2.13].

Lemma 2.5. Let k be an algebraically closed field, let A and B be local k-algebras
and let B′ be a local k-algebra which is essentially a deformation of B. Assume that
A,B and B′ are essentially of finite type over k. Then (A ⊗k B′)M ′ is essentially
a deformation of (A ⊗k B)M , where M (respectively, M ′) is the maximal ideal
M = mA ⊗B +A⊗mB (respectively, M ′ = mA ⊗B′ +A⊗mB).

Proof. If B′ is a deformation of B, or if B′(X) ∼= B(Y ), then (A ⊗k B′)M ′ and
(A ⊗k B)M have the same property. Suppose that B′ = Bp is a localization of B
at a prime ideal p. Then as k is algebraically closed, mA ⊗ B + A ⊗ p is a prime
ideal in A⊗k B and hence (A⊗B′)M ′ is a localization of (A⊗B)M .

If I ⊂ k[[X ]] and J ⊂ k[[Y ]] are licci ideals, they are strongly nonobstructed
and hence so is IR + JR (by the Künneth formula) and its link L. On the other
hand, by Lemma 2.4b, if I and J are generically a complete intersection and not
Gorenstein, then L is not strongly Cohen-Macaulay. The converse is given in the
following theorem, which is one of our main results.

Theorem 2.6. Let R be a regular local ring containing a field, and let I and J be
two transversal licci R-ideals.

(a) If I + J is generically a complete intersection, then the entire linkage class
of I + J is strongly Cohen-Macaulay if and only if I or J is Gorenstein.

(b) I + J is licci only if I or J is a complete intersection.

Proof. We first reduce to the case when R is complete. Clearly IR̂ and JR̂ are

licci R̂-ideals, which are transversal by flatness, and their sum IR̂ + JR̂ is still
generically a complete intersection. Also, I or J is a complete intersection or is

Gorenstein if and only if IR̂ or JR̂ has this property. Finally, an ideal is strongly

Cohen-Macaulay if and only if it has this property after extension to R̂, and as this
property is preserved under even linkage, it follows that the entire linkage class of

I + J is strongly Cohen-Macaulay if and only if IR̂+ JR̂ has this property as well.
Hence we may assume that R is complete, i.e., R = k[[x1, . . . , xn]].

Now as I and J are transversal, (R, I+J) has a deformation (S, Ĩ+J̃), where S =

R[[y1, . . . , yn]], and Ĩ and J̃ are extended from k[[x1, . . . , xn]] and k[[y1, . . . , yn]], re-

spectively. Indeed, one may take Ĩ = IS and J̃ = ϕ(J), where ϕ : k[[x1, . . . , xn]] →
k[[y1, . . . , yn]] is the k-algebra homomorphism ϕ(xi) = yi (1 ≤ i ≤ n). Now Ĩ and

J̃ are licci by Lemma 1.12, Ĩ+ J̃ is generically a complete intersection and similarly

licci whenever I + J is, and Ĩ and J̃ is a complete intersection or Gorenstein if and
only if I or J has this property. Let I + J ∼ L be any geometric link in R. Then

by Lemma 1.12 there exists a link Ĩ + J̃ ∼ L̃ in S such that (S, L̃) is a deformation
of (R,L). As L is generically a complete intersection, by Lemma 1.11 L is strongly

Cohen-Macaulay if and only if L̃ is. It follows that the entire linkage class of I+J is

strongly Cohen-Macaulay if and only if Ĩ + J̃ has the same property. We have thus

reduced to the case where R = k[[x1, . . . , xn, y1, . . . , yn]], and I = ĨR and J = J̃R
are extended from k[[x1, . . . , xn]] and k[[y1, . . . , yn]], respectively.

Now suppose that (S, ˜̃I) is a deformation of (k[[x1, . . . , xn]], Ĩ), where S is a

complete local k-algebra. Then (S[[y1, . . . , yn]], ( ˜̃I, J̃)) is a deformation of (R, I+J)
(in other words, tensor products deform). As we have seen, all of our assumptions
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and conclusions are preserved as we pass from Ĩ and J̃ to ˜̃I and J̃ . As J̃ is licci it
is strongly nonobstructed, and by a result of Herzog ([6, 2.3]) we may assume that

k[[y1, . . . , ym]]/J̃ is a rigid k-algebra. In particular, we may assume that Ĩ and J̃
are generically a complete intersection by [13, 6.1].

Now we prove (a). If the entire linkage class of I+J is strongly Cohen-Macaulay,

then the transversal link L(Ĩ , J̃) ∼ I + J is strongly Cohen-Macaulay. By Lemma
2.4b, this implies that either I or J is Gorenstein. For the converse, we may assume
that I is Gorenstein. As I + J is strongly Cohen-Macaulay by [9, 1.9], it is enough
to show that L is strongly Cohen-Macaulay. Now as J is licci, its entire linkage
class is strongly Cohen-Macaulay. Thus by Lemma 2.4c, it is enough to show that
there exists a geometric link J1 of J such that J1 +J/J satisfies G∞. It will even be
sufficient to show this in some power series extension R[[Z]] of R. The generic link
L1(J) ⊂ R[Z] of J is geometric, and by a result of Kustin and Miller [18, 4.2], the
algebra R[[Z]]/L1(J)R[[Z]] is still rigid over k. In particular, L1(J)R[[Z]] satisfies
G∞ ([13, 6.1]) and thus L1(J)R[[Z]] + JR[[Z]]/JR[[Z]] satisfies G∞ by [13, 3.3].
This proves that the entire linkage class of I + J is strongly Cohen-Macaulay.

It remains to show (b). Let k denote the algebraic closure of k. Then the
property of an R-ideal being licci ascends to R⊗̂kk, while that of being a complete
intersection will descend. Thus we may assume that k is algebraically closed, and
in particular is infinite.

Now Ĩ ⊂ k[[x1, . . . , xn]] is licci, so there exists in particular a sequence of links
in k[[X ]],

I0 = (x1, . . . , xg) ∼ I1 ∼ · · · ∼ In = Ĩ

(as all complete intersection of the same grade lie in the same linkage class). Con-
sider a sequence of generic links Li(x1, . . . , xg) ⊂ Si, 1 ≤ i ≤ n, where Si are
polynomial extensions of S0 = k[[X ]], and put S = Sn. By Theorem 1.14, there

exists a prime p ∈ SpecS such that (Sp, Ln(x)p) is a deformation of (k[[X ]], Ĩ).
Similarly, there is a polynomial extension T of k[[Y ]], containing a generic link
Lm(y1, . . . , yn), and a prime q ∈ SpecT such that (Tq, Lm(y)q) is a deformation of

(k[[Y ]], J̃).
Now the generic link Ln(x1, . . . , xg) ⊂ S (respectively, Lm(y1, . . . , yh) ⊂ T )

may be viewed as an extended ideal from the polynomial subring k[X,Z] ⊂ S
(respectively, k[Y, U ] ⊂ T ). Set p′ = p∩k[X,Z] and q′ = q∩k[Y, U ]. The faithfully
flat morphisms

(k[X,Z]/Ln(x))p′ → (S/Ln(x))p,

(k[Y, U ]/Lm(y))q′ → (T/Lm(y))q

give a faithfully flat morphism of tensor products

((k[X,Z]/Ln(x))p′ ⊗k (k[Y, U ]/Lm(y))q′ )(p′,q′)

→ ( ̂S/Ln(x))p⊗̂k(T̂/Lm(y))q.

Moreover, the latter algebra is a deformation of k[[X ]]/Ĩ⊗̂kk[[Y ]]/J̃ ∼= R/I+J . Now
as k is an infinite field, the property that a Noetherian local k-algebra is a quotient
of a regular local k-algebra by a licci ideal is independent of any presentation (as
can be seen using [12, 2.12], and [20, 2.11]). We have thus reduced to the following

situation: R̃ and S̃ are regular local rings essentially of finite type over k, and Ĩ ⊂ R̃,
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J̃ ⊂ S̃ are licci ideals which are not complete intersections. We must show that

(R̃/Ĩ⊗k S̃/J̃)M is not licci, where M is the maximal ideal mR̃/Ĩ⊗S̃/J̃+R̃/Ĩ⊗mS̃/J̃ .

By part (a), we may assume that Ĩ is Gorenstein. Now Theorem 1.15 implies
that (P [W ]/Pf4(W ))(mP ,W ), where P is a regular local ring and W is a generic

alternating 5× 5 matrix, is essentially a deformation of R̃/Ĩ, while S̃/J̃ has essen-
tially a deformation either (P [W ]/Pf4(W ))(mP ,W ) or (P [V ]/I2(V ))(mP ,V ), with V
a generic 2 × 3 matrix. Moreover, by the proof of [25, 2.6], P may be taken to
be essentially of finite type over k as well. As the property of being licci is pre-
served under essentially a deformation (Lemma 1.12 and [20, 2.12]), by Lemma

2.5 we may assume that R̃/Ĩ = (P [W ]/Pf4(W ))(mP ,W ) = Ã and S̃/J̃ = R̃/Ĩ, or

(P [V ]/I2(V ))(mP ,V ) = B̃. On the other hand, as the ideals Pf4(W ) and I2(V ) are
extended from polynomial k-subalgebras, there are faithfully flat morphisms

(k[W ]/Pf4(W )⊗k k[W ]/Pf4(W ))M ′ →
(
Ã⊗k Ã

)
M

and

(k[W ]/Pf4(W )⊗k k[V ]/I2(V ))M ′ →
(
Ã⊗k B̃

)
M
.

Hence by faithfully flat descent, we are reduced to showing that A⊗kA and A⊗kB
are not licci (after localization at the maximal ideal generated by the variables)
where A = k[W ]/Pf4(W ) and B = k[V ]/I2(V ). We will show this by computing
their homogeneous resolutions.

Let R̃ = k[W ] and S̃ = k[V ]. Then A has a homogeneous resolution over R̃

0 → R̃(−5) → R̃5(−3) → R̃5(−2) → R̃→ A→ 0,

while B has a homogeneous resolution over S̃

0 → S̃2(−3) → S̃3(−2) → S̃ → B → 0.

Hence if R = R̃⊗k R̃ and S = R̃⊗k S̃, then A⊗k A has a homogeneous resolution

0 → R(−10) → · · · → R10(−2) → R→ A⊗k A→ 0

and A⊗k B has a homogeneous resolution

0 → S2(−8) → · · · → S8(−2) → S → A⊗k B → 0.

In the latter case, note that 8 = (2+3−1)·2, and in the former case, 10 = (3+3−1)·2.
Thus by using the criterion [11, 5.8], it follows that (A⊗k A)M and (A⊗k B)M are
not licci. This completes the proof of the theorem.

Corollary 2.7. Let R be a regular local ring containing a field, let I and J be two
transversal licci R-ideals which are not complete intersections, and let K = I + J .
Then K is strongly Cohen-Macaulay, strongly nonobstructed, TorRi (R/K,ωR/K) is
Cohen-Macaulay for every i, and K is not licci.

Proof. Theorem 2.6 implies that K is not licci. As I and J are licci, they are
strongly Cohen-Macaulay, and by [4], TorRi (R/I, ωR/I) and TorRi (R/J, ωR/J) are

Cohen-Macaulay for every i. As I/I2⊗R/IωR/I ∼= TorRi (R/I, ωR/I), the rest follows
from the Künneth formula (cf., e.g., [9, pp. 746–748]).

We conclude this section with the simplest generic examples.
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Example 2.8. Let k be a field, let X and Y be generic 2 × 3 matrices, let U and
V be generic alternating 5× 5 matrices, and let R = k[[X,Y, U, V ]]. The following
ideals are not licci:

(a) I2(X)+I2(Y ) is a grade 4, deviation 2, type 4 strongly Cohen-Macaulay and
strongly nonobstructed ideal.

(b) I2(X)+Pf4(U) is a grade 5, deviation 3, type 2 strongly nonobstructed ideal
whose entire linkage class is strongly Cohen-Macaulay.

(c) Pf4(U)+Pf4(V ) = K is a grade 6, deviation 4, Gorenstein strongly Cohen-

Macaulay ideal with TorR• (R/K,R/K) Cohen-Macaulay.

3. Sums of linked ideals

In this section we study the sum K = I + J of two geometrically linked Cohen-
Macaulay ideals I and J in a local Gorenstein ring. The link I ∼ J being geometric,
one knows that K is a Gorenstein ideal with gradeK = grade I + 1 ([21, 1.4]). A
result of Ulrich [26, 2.1] guarantees that K is licci whenever I is. But following his
lead in [26], one may still investigate how certain properties, such as being strongly
nonobstructed or strongly Cohen-Macaulay, pass from I and J to I + J .

We will need some auxiliary results involving the depth of certain relevant mod-
ules.

Lemma 3.1. Let R be a local Gorenstein ring, and let I and J be geometrically
linked Cohen-Macaulay R-ideals, which are not both grade one principal ideals.

depth IJ = depth
(
I ⊗ ωR/I

)
/τ.

Proof. We may assume that g = grade I > 0, else both modules in question vanish.
Let α be the regular sequence defining the link I ∼ J . Tensoring the exact sequence

0 → ωR/I → R/(α) → R/J → 0

with R/I gives an exact sequence

TorR1 (ωR/I , R/I) // TorR1 (R/(α), R/I) // TorR1 (R/J,R/I)

I ⊗ ωR/I // (α)/(α)I // (α)/IJ → 0

Now (α)/(α)I ∼= (α) ⊗R R/I ∼= (α)/(α)2 ⊗R/(α) R/I ∼= (R/(α))g ⊗R/(α) R/I ∼=
(R/I)g, and α generates I generically as the link I ∼ J is geometric. Thus one
obtains an exact sequence

0 → (
I ⊗ ωR/I

)
/τ → (R/I)g → (α)/IJ → 0.

The result follows once we show that R/IJ is not Cohen-Macaulay: for then
depth(I ⊗ ωR/I)/τ = depth(α)/IJ + 1 = depthR/IJ + 1 = depth IJ .

Suppose R/IJ is Cohen-Macaulay. Then IJ is unmixed, and it follows that
IJ = I ∩ J = (α). If “—” denotes reduction modulo (α1, . . . , αg−1), then one has
that the product IJ = (αg) is principal. It follows that I and J are invertible, and
hence principal as R is local. Thus I = (α1, . . . , αg−1, a) and J = (α1, . . . , αg−1, b)
for some a ∈ I and b ∈ J . But then I = (α1, . . . , αg−1, a) ⊂ (IJ, a) and I = (a)
by Nakayama’s Lemma. Similarly, J = (b). As I and J are assumed not both
principal, we conclude that R/IJ is not Cohen-Macaulay.



1924 MARK R. JOHNSON

The next result is a variant of a formula of [26] (which follows immediately from
its proof) equating the depth of H1(I) with that of the second symmetric power of
the canonical module of a link of I.

Lemma 3.2 ([26, 3.1]). Let R be a local Gorenstein ring and let I be a Cohen-
Macaulay R-ideal. Then one of the following conditions holds:

(a) depthH1(I) = depthS2(I)
(b) H1(I) is Cohen-Macaulay and depthS2(I) ≥ dimR/I + 1.

We are now prepared to state one of our main results. It significantly generalizes
[26, 3.11], which gives conditions for a sum of geometrically linked ideals to be
syzygetic and strongly nonobstructed.

Theorem 3.3. Let R be a local Gorenstein ring, let I and J be two geometrically
linked Cohen-Macaulay ideals, and let K = I + J .

(a) depthK/K2 = min
{
depth I/I2, depth J/J2, depth I⊗ωR/I/τ − 1, dimR/K

}
(b) depthH1(K) = min

{
depthH1(I), depthH1(J), depth I ⊗ ωR/I , dimR/K

}
.

Proof. We first prove (a). If I is a complete intersection, then so isK by Proposition
1.2c, and the result is clear. Thus we may assume I is not a complete intersection.
Let α be the regular sequence defining the link I ∼ J . As (α)/(α)I ∼= (R/I)g,
depthR/(α)I = dimR/I and similarly depthR/(α)J = dimR/J . But as α gener-
ates I and J generically, (α)I ⊂ I2 ∩ IJ ⊂ I2 ∩ (α) = αI and αJ ⊂ J2 ∩ IK ⊂
J2∩(I2, α) ⊂ J2∩(I2∩J, α) = J2∩(α) = αJ , hence all containments are equalities.
It follows that there are exact sequences

0 → (α)I → I2 ⊕ IJ → IK → 0,

0 → (α)J → IK ⊕ J2 → K2 → 0.

Using Lemma 3.1, (a) now follows by a depth chase.
To prove (b), we reduce to the grade 0 case. Let “—” denote reduction modulo

the linking sequence α Then the depth of H1 of any of I, J or K is unchanged
passing to I, J or K by Lemma 1.5, while there is an exact sequence

0 → ωgR/I → I ⊗ ωR/I → I ⊗ ωR/I → 0.

Thus the formula of (b) is unchanged by factoring out (α), and we may thus assume
that g = 0.

Now K = I ⊕ J ∼= I ⊕ ωR/I , so

S2(K) ∼= S2(I)⊕ S2(J)⊕ (
I ⊗ ωR/I

)
.(3.4)

As g = 0, Lemma 3.2 implies that depthH1(I) = depthS2(I) and depthH1(I) =
depthS2(J). Thus (b) will follow from (3.4) once we show that depthH1(K) =
depthS2(K). If this is not the case, by Lemma 3.2 we would have that depthS2(K)
= dimR, and in particular S2(K) would be torsion free. But then (3.4) would
imply that I ⊗ωR/I ∼= I ⊗ J = 0, and thus that I = 0 or J = 0. This contradiction
completes the proof.

Corollary 3.5 (cf. [26, 3.11]). Let R be a local Gorenstein ring and let K = I +J
be a sum of two geometrically linked Cohen-Macaulay R-ideals.

(a) K is strongly nonobstructed if and only if

depthR/I2 ≥ dimR/I − 1, depthR/J2 ≥ dimR/J − 1,

and (I ⊗ ωR/I)/τ is Cohen-Macaulay.
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(b) Suppose that I satisfies (CI1). Then K is syzygetic if and only if I and J
are syzygetic, and I ⊗ ωR/I is torsion free.

Proof. As K is Gorenstein, K ⊗ ωR/K ∼= K/K2, so K is strongly nonobstructed

if and only if the conormal module K/K2 is Cohen-Macaulay. Thus (a) follows
immediately from Theorem 3.3(a).

For (b), suppose first that I and J are syzygetic and I ⊗R ωR/I is torsion free.
Then H1(I) and H1(J) are torsion free, and then so is H1(K) by Theorem 3.3(b).
As K is generically a complete intersection, since I satisfies (CI1), it follows that
K is syzygetic. (This would follow from [26, 3.10] even if I does not satisfy (CI1).)
Conversely, suppose that K is syzygetic. Then H1(K) is torsion free and by Theo-
rem 3.3(b), H1(I) and I ⊗ ωR/I are torsion free as I satisfies (CI1). As I is gener-
ically a complete intersection, in particular I is syzygetic. As J is also generically
a complete intersection, it is enough to show that H1(J) is also torsion free, which
by Theorem 3.3(b) is enough to check locally in codimension one. But if p ∈ V (J)
and dim(R/J)p = 1, then Ip ∼ Jp, so Jp is an almost complete intersection, which
is well-known to be syzygetic. It follows that J is syzygetic.

Remark 3.6. One may use Theorem 3.3 to contrast the properties that H1 is Cohen-
Macaulay with that of being strongly nonobstructed. For perfect Gorenstein ideals,
the difference first appears in grade 5. Indeed, a perfect Gorenstein ideal of grade
≤ 2 is a complete intersection, of grade 3 is licci ([33]), and of grade 4 is strongly
nonobstructed if and only if H1 is Cohen-Macaulay ([31]). An example where the
properties do not coincide is given in [26, 5.3] (or see the next result). That these
two properties coincide for perfect Gorenstein ideals if grade 4 implies by Theorem
3.3 some relations on the depths of the modules H1(I), H1(J), and I ⊗R ωR/I for
perfect ideals I and J of grade 3, which are (geometrically) linked. A more complete
picture can be seen by the work of Vasconcelos [29]; we mention only one result: If
I and J are two linked perfect ideals of grade 3, then H1(I) is Cohen-Macaulay if
and only if H1(J) is Cohen-Macaulay.

We now combine the results of this and the previous section to construct some
examples. They are similar in nature to the examples of [26], whose properties were
verified with computer assistance. These examples inspired much of the work of
this paper.

Proposition-Example 3.7. let I ⊂ k[[x1, . . . , xn]] and J ⊂ k[[y1, . . . , ym]] be two
non-Gorenstein licci ideals that satisfy (CI1), and let L be a geometric transversal
link of I and J in R = k[[x1, . . . , xn, y1, . . . , ym]]. Then K = IR + JR + L is a
strongly nonobstructed Gorenstein R-ideal which is not syzygetic.

Proof. Let A = IR + JR, so that K is the sum of the geometrically linked ideals
A ∼ L. By Lemma 2.4b, L is not syzygetic. As A satisfies (CI1), Corollary 3.5b
implies that K is not syzygetic. On the other hand, A is strongly nonobstructed and
strongly Cohen-Macaulay ([9, 1.9]) and thus the exact sequence (1.6) implies that
depthR/A2 ≥ dimR/A− 1. Finally, by Lemma 2.4a, depthR/L2 ≥ dimR/L− 1.
Thus K is strongly nonobstructed by Corollary 3.5a.

Example 3.8. Let I = (x1x2, x2x3, x3x4) and J = (y1y2, y2y3, y3y4) in R =
k[[x1, . . . , x4, y1, . . . , y4]]. Then I and J are grade 2 perfect R-ideals, and hence
are licci. One may view I and J as edge ideals of the graph [32]:
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1 2 3 4

Figure 1

Linking via the outer edges produces a transversal link L = (x1x2, x3x4, y1y2, y3y4,
x1y1, x1y4, x4y1, x4y4). By Lemma 2.4, L is a perfect R-ideal of grade 4, deviation
4 and type 2, which is strongly nonobstructed, satisfies depthR/L2 ≥ dimR/L−1,
but is not syzygetic. Moreover, L may be viewed as the ideal of the following graph:

x2

x1

y4

y3

y2

y1

x4

x3

Figure 2

Now Proposition 3.7 implies thatK = I+J+L = (x1x2, x2x3, x3x4, y1y2, y2y3, y3y4,
x1y1, x1y4, x4y1, x4y4) is a Gorenstein ideal of grade 5 and deviation 5 which is
strongly nonobstructed and not syzygetic. The ideal K is the ideal of the graph

x2

x1

y4

y3

y2

y1

x4

x3

Figure 3

We give another way to obtain the previous example K as a sum of linked
ideals. It will give a reduced perfect ideal of grade 4 whose entire linkage class
is strongly Cohen-Macaulay but whose twisted conormal module has torsion. (A
similar example [26, 5.3a] has grade 5.)

Example 3.9. Consider the edge ideal I of the tree
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Figure 4

It is easily seen that I is a perfect ideal of grade 4 (e.g., by [32]), deviation 3 and type
3. Moreover by [23, 3.11], I is strongly Cohen-Macaulay and linking via the four
outer edges gives an ideal J with the same graph, and thus is also strongly Cohen-
Macaulay. It follows that the entire linkage class of I is strongly Cohen-Macaulay.
However, K = I + J is a Gorenstein ideal of grade 5 generated by ten quadrics.
It is easy to see that it is the ideal of Example 3.8. Thus K is not syzygetic and
hence I ⊗ ωR/I has torsion by Corollary 3.5b. On the other hand, K is strongly
nonobstructed, by Corollary 3.5a it follows that (I ⊗ ωR/I)/τ is Cohen-Macaulay.

We conclude with an application which proves part of a claim made in [27, 2.11]
and [16, 3.6], which was first verified by computer.

Example 3.10. Let k be a field, X be a generic alternating 5× 5 matrix, and Y a
generic 5× 1 matrix, let R = k[X,Y ] (possibly localized at the irrelevant maximal
ideal), and let I = Pf4(X) + I1(XY ) be the ideal generated by the 4× 4 Pfaffians
of X and the entries of the product matrix XY .

This example has been recently considered in the context of algebra structures
on the minimal resolution ([24]). It is well-known that R/I is the associated graded
algebra of the ideal Pf4(X), and that it is Gorenstein ([8, 2.2]). We will show that
I/I2 is Cohen-Macaulay, and that H1(I) is not Cohen-Macaulay. In fact, we will
show that I is doubly linked to a deformation of the ideal K of Example 3.8. The
claim then follows from Theorems 1.8 and 1.9, Lemma 1.11, and [14, 2.2].

We have I = (f1, . . . , f5, l1, . . . , l5), where fi denotes the Pfaffian obtained by
deleting the i-th row and column of X , and li is the product of the i-th row of X
with Y . Write X = (xij)1≤i,j≤5, Y = (Yi)1≤i≤5.

As X is alternating, Y t(XY ) = 0, so there is a relation

y1l1 + · · ·+ y5l5 = 0(3.11)

on l1, . . . , l5. In particular, y5 ∈ (l1, . . . , l4) : l5. On the other hand, it is well known
that R/I1(XY ) is the Rees algebra of Pf4(X), and thus is a Cohen-Macaulay
domain ([8, 2.2]). It then follows (and in any event is easy to see directly) that
l1, . . . , l4 is a regular sequence. Now as (l1, . . . , l5) defines the Rees algebra of
(f1, . . . , f5), in particular X · (f)t = 0, and hence Y tX(f)t = 0. Thus we obtain
another relation

f1l1 + · · ·+ f5l5 = 0

on l1, . . . , l5. It follows that I is not syzygetic. In particular, this relation gives
f5 ∈ (l1, . . . , l4) : l5. Thus we have that the link (l1, . . . , l4) : l5 contains the ideal
(l1, . . . , l4, y5, f5). However the latter ideal is easily seen to be a hyperplane section
of the generic grade 3 Gorenstein ideal of 4×4 Pfaffians, and in particular is prime.
The previous remarks then imply that l1, . . . , l4, f1 is a regular sequence. Thus we
may consider the link (l1, . . . , l4, f1) : I. To compute this ideal we need a few more
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obvious relations:

y1f5 − y5f1 = x34l2 − x24l3 + x23l4,(3.12)

y1f4 − y4f1 = x35l2 − x25l3 + x23l5,(3.13)

y1f3 − y3f1 = x45l2 − x25l4 + x24l5,(3.14)

y1f2 − y2f1 = x45l3 − x35l4 + x34l5.(3.15)

After multiplying these equations by y5 and using (3.11), we find that y1y5 ∈ J =
(l1, . . . , l4, f1). In fact, J = (l1, . . . , l4, f1, y1y5). Indeed, as J/(l1, . . . , l4, f1) is cyclic
(Proposition 1.2c), it would be enough by degree reasons to show that J contains
no linear form. This may be readily checked by specializing sufficiently many of the
variables. (One could also see this from the homogeneous resolution of R/I, which
has the form

0 → R(−8) → · · · → R10(−2) → R→ R/I → 0.

By mapping cone construction [21], J must have a resolution

0 → R5(−8) → · · · → R6(−2) → R→ R/J → 0

and thus contains no linear form.)
Now it is easy to see that l1, l3, l4, f1, y1y5 is a regular sequence contained in J ,

so we may form the link

K = (l1, l3, l4, f1, y1y5) : J,

(l1, l3, l4, f1, y1y5) : l2.

We may similarly as above compute the generators of K. Clearly y1y2 ∈ K
by equation (3.11), while x34y5, x34y2 ∈ K by using (3.12) and (3.15), respec-
tively. On the other hand, by (3.13) and (3.14) x23y2 − x35y5 and x24y2 − x45y5

belong to K. Thus K also contains l3 + (x23y2 − x35y5) = −x13y1 + x34y4,
and l4 + (x24y2 − x45y5) = −x14y1 − x34y3. Hence K contains ten quadrics
l1, f1, y1y5, y1y2, x34y5, x34y2, x23y2− x35y5, −x13y1 + x34y4, x24y2− x45y5, x14y1 +
x34y3. But it is now obvious that the ideal generated by these quadrics specializes
(e.g., via x12 = x13 = x15 = x24 = x25 = x35 = y3 = 0) to the ideal (also called
K) of Example 3.8. In particular, the former ideal is Cohen-Macaulay, and it then
follows that K is precisely the ideal generated by these quadrics. Thus we have
shown that I is doubly linked to a deformation of the ideal of Example 3.8, which
proves the claim.

We make one final remark about the last example. In [27] and [16] the ideal I
is claimed to have the additional surprising property that R/I3 is Cohen-Macaulay
(this again was only verified by computer). More surprisingly perhaps is, this is
false if chark = 2. Presumably this is related to the fact that the homogeneous
resolution of R/I differs when k has characteristic 2. Indeed, by [24] if chark 6= 2,
the minimal resolution has the form

0 → R(−8) → R10(−6) → R16(−5) → R16(−3) → R10(−2) → R→ R/I → 0,

while in char 2 it is

0 → R(−8) → R10(−6) →
R(−4)⊕
R16(−5)

→
R16(−3)⊕
R(−4)

→ R10(−2) → R→ R/I → 0.
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1981.

4. R.-O. Buchweitz and B. Ulrich, Homological properties which are invariant under linkage,
preprint.
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