Linkage and sums of ideals
HTML articles powered by AMS MathViewer
- by Mark R. Johnson
- Trans. Amer. Math. Soc. 350 (1998), 1913-1930
- DOI: https://doi.org/10.1090/S0002-9947-98-01976-X
- PDF | Request permission
Abstract:
It is shown (under mild conditions) that the sum of transversal ideals in a regular local ring cannot lie in the linkage class of a complete intersection. For a sum of geometrically linked Cohen-Macaulay ideals, we compute the depths of the conormal module and the first Koszul homology. As applications, we construct general examples of ideals which are strongly Cohen-Macaulay, strongly nonobstructed but not in the linkage class of a complete intersection, and Gorenstein ideals which are strongly nonobstructed but not syzygetic.References
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Maurice Auslander and Idun Reiten, Modules determined by their composition factors, Illinois J. Math. 29 (1985), no. 2, 280–301. MR 784524
- R.-O. Buchweitz, Contributions à la thèorie des singularités, Thesis, l’Université de Paris, 1981.
- R.-O. Buchweitz and B. Ulrich, Homological properties which are invariant under linkage, preprint.
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Jürgen Herzog, Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83–105 (German). MR 579384, DOI 10.1515/crll.1980.318.83
- Silvio Greco and Giuseppe Valla (eds.), Commutative algebra, Heidelberger Taschenbücher [Heidelberg Paperbacks], vol. 80, Marcel Dekker, Inc., New York, 1983. MR 686936
- Craig Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043–1062. MR 675309, DOI 10.2307/2374083
- Craig Huneke, Strongly Cohen-Macaulay schemes and residual intersections, Trans. Amer. Math. Soc. 277 (1983), no. 2, 739–763. MR 694386, DOI 10.1090/S0002-9947-1983-0694386-5
- Craig Huneke and Bernd Ulrich, Divisor class groups and deformations, Amer. J. Math. 107 (1985), no. 6, 1265–1303 (1986). MR 815763, DOI 10.2307/2374407
- Craig Huneke and Bernd Ulrich, The structure of linkage, Ann. of Math. (2) 126 (1987), no. 2, 277–334. MR 908149, DOI 10.2307/1971402
- Craig Huneke and Bernd Ulrich, Algebraic linkage, Duke Math. J. 56 (1988), no. 3, 415–429. MR 948528, DOI 10.1215/S0012-7094-88-05618-9
- Craig Huneke and Bernd Ulrich, Residual intersections, J. Reine Angew. Math. 390 (1988), 1–20. MR 953673, DOI 10.1515/crll.1988.390.1
- C. Huneke and B. Ulrich, Powers of licci ideals, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 339–346. MR 1015526, DOI 10.1007/978-1-4612-3660-3_{1}7
- Craig Huneke and Bernd Ulrich, Local properties of licci ideals, Math. Z. 211 (1992), no. 1, 129–154. MR 1179785, DOI 10.1007/BF02571423
- Mark Johnson and Bernd Ulrich, Artin-Nagata properties and Cohen-Macaulay associated graded rings, Compositio Math. 103 (1996), no. 1, 7–29. MR 1404996
- Andrew R. Kustin and Matthew Miller, A general resolution for grade four Gorenstein ideals, Manuscripta Math. 35 (1981), no. 1-2, 221–269. MR 627935, DOI 10.1007/BF01168458
- Andrew R. Kustin and Matthew Miller, Deformation and linkage of Gorenstein algebras, Trans. Amer. Math. Soc. 284 (1984), no. 2, 501–534. MR 743730, DOI 10.1090/S0002-9947-1984-0743730-X
- Stephen Lichtenbaum, On the vanishing of $\textrm {Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220–226. MR 188249
- E. Lopez, Licci Gorenstein ideals of deviation two, Ph.D. thesis, Michigan State University (1988).
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- A. Simis and W. V. Vasconcelos, The syzygies of the conormal module, Amer. J. Math. 103 (1981), no. 2, 203–224. MR 610474, DOI 10.2307/2374214
- Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), no. 2, 389–416. MR 1283294, DOI 10.1006/jabr.1994.1192
- Hema Srinivasan, A grade five Gorenstein algebra with no minimal algebra resolutions, J. Algebra 179 (1996), no. 2, 362–379. MR 1367854, DOI 10.1006/jabr.1996.0016
- M. Nagata and H. Matsumura (eds.), Commutative algebra and combinatorics, Advanced Studies in Pure Mathematics, vol. 11, North-Holland Publishing Co., Amsterdam; Kinokuniya Company Ltd., Tokyo, 1987. Papers from the U.S.-Japan Joint Seminar held in Kyoto, August 25–31, 1985. MR 951190, DOI 10.2969/aspm/01110000
- Bernd Ulrich, Sums of linked ideals, Trans. Amer. Math. Soc. 318 (1990), no. 1, 1–42. MR 964902, DOI 10.1090/S0002-9947-1990-0964902-8
- Bernd Ulrich, Artin-Nagata properties and reductions of ideals, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992) Contemp. Math., vol. 159, Amer. Math. Soc., Providence, RI, 1994, pp. 373–400. MR 1266194, DOI 10.1090/conm/159/01519
- B. Ulrich, Parafactoriality and small divisor class groups, in preparation.
- Wolmer V. Vasconcelos, Koszul homology and the structure of low codimension Cohen-Macaulay ideals, Trans. Amer. Math. Soc. 301 (1987), no. 2, 591–613. MR 882705, DOI 10.1090/S0002-9947-1987-0882705-X
- Wolmer V. Vasconcelos, Arithmetic of blowup algebras, London Mathematical Society Lecture Note Series, vol. 195, Cambridge University Press, Cambridge, 1994. MR 1275840, DOI 10.1017/CBO9780511574726
- W. V. Vasconcelos and R. Villarreal, On Gorenstein ideals of codimension four, Proc. Amer. Math. Soc. 98 (1986), no. 2, 205–210. MR 854019, DOI 10.1090/S0002-9939-1986-0854019-X
- Rafael H. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), no. 3, 277–293. MR 1031197, DOI 10.1007/BF02568497
- Junzo Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227–232. MR 319985
Bibliographic Information
- Mark R. Johnson
- Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701
- Email: mark@math.uark.edu
- Received by editor(s): June 10, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 1913-1930
- MSC (1991): Primary 13C40, 13C14
- DOI: https://doi.org/10.1090/S0002-9947-98-01976-X
- MathSciNet review: 1432202