Equivalence of norms on operator space tensor products of $C^\ast$-algebras
HTML articles powered by AMS MathViewer
- by Ajay Kumar and Allan M. Sinclair
- Trans. Amer. Math. Soc. 350 (1998), 2033-2048
- DOI: https://doi.org/10.1090/S0002-9947-98-02190-4
- PDF | Request permission
Abstract:
The Haagerup norm $\Vert \cdot \Vert _{h}$ on the tensor product $A\otimes B$ of two $C^*$-algebras $A$ and $B$ is shown to be Banach space equivalent to either the Banach space projective norm $\Vert \cdot \Vert _{\gamma }$ or the operator space projective norm $\Vert \cdot \Vert _{\wedge }$ if and only if either $A$ or $B$ is finite dimensional or $A$ and $B$ are infinite dimensional and subhomogeneous. The Banach space projective norm and the operator space projective norm are equivalent on $A\otimes B$ if and only if $A$ or $B$ is subhomogeneous.References
- R. J. Archbold and C. J. K. Batty, $C^{\ast }$-tensor norms and slice maps, J. London Math. Soc. (2) 22 (1980), no. 1, 127–138. MR 579816, DOI 10.1112/jlms/s2-22.1.127
- D. P. Blecher, Geometry of the tensor product of $C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 1, 119–127. MR 938457, DOI 10.1017/S0305004100065294
- David P. Blecher, Tensor products of operator spaces. II, Canad. J. Math. 44 (1992), no. 1, 75–90. MR 1152667, DOI 10.4153/CJM-1992-004-5
- David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, DOI 10.1016/0022-1236(91)90042-4
- David P. Blecher and Roger R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. (2) 45 (1992), no. 1, 126–144. MR 1157556, DOI 10.1112/jlms/s2-45.1.126
- Erik Christensen and Allan M. Sinclair, A survey of completely bounded operators, Bull. London Math. Soc. 21 (1989), no. 5, 417–448. MR 1005819, DOI 10.1112/blms/21.5.417
- Edward G. Effros and Akitaka Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), no. 2, 257–276. MR 891774, DOI 10.1512/iumj.1987.36.36015
- Edward G. Effros and Zhong-Jin Ruan, On approximation properties for operator spaces, Internat. J. Math. 1 (1990), no. 2, 163–187. MR 1060634, DOI 10.1142/S0129167X90000113
- Edward G. Effros and Zhong-Jin Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorizations, J. Funct. Anal. 100 (1991), no. 2, 257–284. MR 1125226, DOI 10.1016/0022-1236(91)90111-H
- Edward G. Effros and Zhong-Jin Ruan, A new approach to operator spaces, Canad. Math. Bull. 34 (1991), no. 3, 329–337. MR 1127754, DOI 10.4153/CMB-1991-053-x
- E.G. Effros and Z-J. Ruan, Operator convolution algebras. An approach to Quantum groups. (preprint).
- Uffe Haagerup, The Grothendieck inequality for bilinear forms on $C^\ast$-algebras, Adv. in Math. 56 (1985), no. 2, 93–116. MR 788936, DOI 10.1016/0001-8708(85)90026-X
- Tadasi Huruya and Jun Tomiyama, Completely bounded maps of $C^{\ast }$-algebras, J. Operator Theory 10 (1983), no. 1, 141–152. MR 715564
- Takashi Itoh, The Haagerup type cross norm on $C^*$-algebras, Proc. Amer. Math. Soc. 109 (1990), no. 3, 689–695. MR 1014645, DOI 10.1090/S0002-9939-1990-1014645-5
- B. E. Johnson, R. V. Kadison, and J. R. Ringrose, Cohomology of operator algebras. III. Reduction to normal cohomology, Bull. Soc. Math. France 100 (1972), 73–96. MR 318908
- Sten Kaijser and Allan M. Sinclair, Projective tensor products of $C^\ast$-algebras, Math. Scand. 55 (1984), no. 2, 161–187. MR 787195, DOI 10.7146/math.scand.a-12074
- A. Kumar, Involution and the Haagerup tensor product (preprint).
- M. Mathieu, Generalising elementary operators, Semesterbericht Funktionalanalysis SS88, Tübingen (1988), 133-153.
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- V. I. Paulsen and R. R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal. 73 (1987), no. 2, 258–276. MR 899651, DOI 10.1016/0022-1236(87)90068-1
- Gilles Pisier, Grothendieck’s theorem for noncommutative $C^{\ast }$-algebras, with an appendix on Grothendieck’s constants, J. Functional Analysis 29 (1978), no. 3, 397–415. MR 512252, DOI 10.1016/0022-1236(78)90038-1
- Gilles Pisier, Factorization of linear operators and geometry of Banach spaces, CBMS Regional Conference Series in Mathematics, vol. 60, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 829919, DOI 10.1090/cbms/060
- Allan M. Sinclair and Roger R. Smith, Hochschild cohomology of von Neumann algebras, London Mathematical Society Lecture Note Series, vol. 203, Cambridge University Press, Cambridge, 1995. MR 1336825, DOI 10.1017/CBO9780511526190
- R. R. Smith, Completely bounded maps between $C^{\ast }$-algebras, J. London Math. Soc. (2) 27 (1983), no. 1, 157–166. MR 686514, DOI 10.1112/jlms/s2-27.1.157
- R. R. Smith, Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), no. 1, 156–175. MR 1138841, DOI 10.1016/0022-1236(91)90139-V
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
Bibliographic Information
- Ajay Kumar
- Affiliation: Department of Mathematics, Rajdhani College (University of Delhi), Raja Garden, New Delhi-110015, India
- Allan M. Sinclair
- Affiliation: Department of Mathematics and Statistics, University of Edinburgh, James Clerk Maxwell Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, Scotland
- Email: allan@maths.ed.ac.uk
- Received by editor(s): August 16, 1996
- Additional Notes: Supported by Commonwealth Academic Staff Fellowship at the University of Edinburgh
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2033-2048
- MSC (1991): Primary 46L05; Secondary 46C10, 47035
- DOI: https://doi.org/10.1090/S0002-9947-98-02190-4
- MathSciNet review: 1473449