Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Periodic orbits of the restricted three-body problem
HTML articles powered by AMS MathViewer

by Salem Mathlouthi PDF
Trans. Amer. Math. Soc. 350 (1998), 2265-2276 Request permission

Abstract:

We prove, using a variational formulation, the existence of an infinity of periodic solutions of the restricted three-body problem. When the problem has some additional symmetry (in particular, in the autonomous case), we prove the existence of at least two periodic solutions of minimal period $T$, for every $T>0$. We also study the bifurcation problem in a neighborhood of each closed orbit of the autonomous restricted three-body problem.
References
  • A. Ambrosetti, V. Coti Zelati, and I. Ekeland, Symmetry breaking in Hamiltonian systems, J. Differential Equations 67 (1987), no. 2, 165–184. MR 879691, DOI 10.1016/0022-0396(87)90144-6
  • Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349–381. MR 0370183, DOI 10.1016/0022-1236(73)90051-7
  • A. Bahri, Une méthode perturbative en théorie de Morse, Thèse d’Etat, Publications de l’Université Paris VI, 1981.
  • A. Bahri and H. Berestycki, A perturbation method in critical point theory and application, Trans. Amer. Math. Soc. 267 (1981), 1–32.
  • A. Bahri and P.-L. Lions, Morse index of some min-max critical points. I. Application to multiplicity results, Comm. Pure Appl. Math. 41 (1988), no. 8, 1027–1037. MR 968487, DOI 10.1002/cpa.3160410803
  • Kung Ching Chang, Infinite-dimensional Morse theory and its applications, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 97, Presses de l’Université de Montréal, Montreal, QC, 1985. MR 837186
  • David C. Clark, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J. 22 (1972/73), 65–74. MR 296777, DOI 10.1512/iumj.1972.22.22008
  • Mario Girardi and Michele Matzeu, Periodic solutions of second order nonautonomous systems with the potentials changing sign, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1993), no. 4, 273–277 (English, with English and Italian summaries). MR 1269617
  • A. Marino and G. Prodi, Metodi perturbativi nella teoria di Morse, Boll. Un. Mat. Ital. (4) 11 (1975), no. 3, suppl., 1–32 (Italian, with English summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR 0418150
  • Jean Mawhin and Michel Willem, Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR 982267, DOI 10.1007/978-1-4757-2061-7
  • Jürgen Moser, Stable and random motions in dynamical systems, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR 0442980
  • Alfred Frölicher, Cartesian closed categories and analysis of smooth maps, Categories in continuum physics (Buffalo, N.Y., 1982) Lecture Notes in Math., vol. 1174, Springer, Berlin, 1986, pp. 43–51. MR 842916, DOI 10.1007/BFb0076933
  • P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139–195. MR 0464299
  • K. Sitnikov, Existence of oscillating motion for the three-body problem, J. Dokl. Akad. Nauk USSR 133 (1960), 303–306.
  • Michel Willem, Perturbations of nondegenerate periodic orbits of Hamiltonian systems, Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 209, Reidel, Dordrecht, 1987, pp. 261–265. MR 920628
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34A34, 34A47
  • Retrieve articles in all journals with MSC (1991): 34A34, 34A47
Additional Information
  • Salem Mathlouthi
  • Affiliation: Faculté des Sciences de Tunis, Département de Mathématiques, Campus Universitaire, 1060, Tunis, Tunisie
  • Received by editor(s): July 20, 1995
  • © Copyright 1998 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 350 (1998), 2265-2276
  • MSC (1991): Primary 34A34; Secondary 34A47
  • DOI: https://doi.org/10.1090/S0002-9947-98-01731-0
  • MathSciNet review: 1373645