## Periodic orbits of the restricted three-body problem

HTML articles powered by AMS MathViewer

- by Salem Mathlouthi PDF
- Trans. Amer. Math. Soc.
**350**(1998), 2265-2276 Request permission

## Abstract:

We prove, using a variational formulation, the existence of an infinity of periodic solutions of the restricted three-body problem. When the problem has some additional symmetry (in particular, in the autonomous case), we prove the existence of at least two periodic solutions of minimal period $T$, for every $T>0$. We also study the bifurcation problem in a neighborhood of each closed orbit of the autonomous restricted three-body problem.## References

- A. Ambrosetti, V. Coti Zelati, and I. Ekeland,
*Symmetry breaking in Hamiltonian systems*, J. Differential Equations**67**(1987), no. 2, 165–184. MR**879691**, DOI 10.1016/0022-0396(87)90144-6 - Antonio Ambrosetti and Paul H. Rabinowitz,
*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183**, DOI 10.1016/0022-1236(73)90051-7 - A. Bahri,
*Une méthode perturbative en théorie de Morse*, Thèse d’Etat, Publications de l’Université Paris VI, 1981. - A. Bahri and H. Berestycki,
*A perturbation method in critical point theory and application*, Trans. Amer. Math. Soc.**267**(1981), 1–32. - A. Bahri and P.-L. Lions,
*Morse index of some min-max critical points. I. Application to multiplicity results*, Comm. Pure Appl. Math.**41**(1988), no. 8, 1027–1037. MR**968487**, DOI 10.1002/cpa.3160410803 - Kung Ching Chang,
*Infinite-dimensional Morse theory and its applications*, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 97, Presses de l’Université de Montréal, Montreal, QC, 1985. MR**837186** - David C. Clark,
*A variant of the Lusternik-Schnirelman theory*, Indiana Univ. Math. J.**22**(1972/73), 65–74. MR**296777**, DOI 10.1512/iumj.1972.22.22008 - Mario Girardi and Michele Matzeu,
*Periodic solutions of second order nonautonomous systems with the potentials changing sign*, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.**4**(1993), no. 4, 273–277 (English, with English and Italian summaries). MR**1269617** - A. Marino and G. Prodi,
*Metodi perturbativi nella teoria di Morse*, Boll. Un. Mat. Ital. (4)**11**(1975), no. 3, suppl., 1–32 (Italian, with English summary). Collection of articles dedicated to Giovanni Sansone on the occasion of his eighty-fifth birthday. MR**0418150** - Jean Mawhin and Michel Willem,
*Critical point theory and Hamiltonian systems*, Applied Mathematical Sciences, vol. 74, Springer-Verlag, New York, 1989. MR**982267**, DOI 10.1007/978-1-4757-2061-7 - Jürgen Moser,
*Stable and random motions in dynamical systems*, Annals of Mathematics Studies, No. 77, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1973. With special emphasis on celestial mechanics; Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, N. J. MR**0442980** - Alfred Frölicher,
*Cartesian closed categories and analysis of smooth maps*, Categories in continuum physics (Buffalo, N.Y., 1982) Lecture Notes in Math., vol. 1174, Springer, Berlin, 1986, pp. 43–51. MR**842916**, DOI 10.1007/BFb0076933 - P. H. Rabinowitz,
*Variational methods for nonlinear eigenvalue problems*, Eigenvalues of non-linear problems (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1974) Edizioni Cremonese, Rome, 1974, pp. 139–195. MR**0464299** - K. Sitnikov,
*Existence of oscillating motion for the three-body problem*, J. Dokl. Akad. Nauk USSR**133**(1960), 303–306. - Michel Willem,
*Perturbations of nondegenerate periodic orbits of Hamiltonian systems*, Periodic solutions of Hamiltonian systems and related topics (Il Ciocco, 1986) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 209, Reidel, Dordrecht, 1987, pp. 261–265. MR**920628**

## Additional Information

**Salem Mathlouthi**- Affiliation: Faculté des Sciences de Tunis, Département de Mathématiques, Campus Universitaire, 1060, Tunis, Tunisie
- Received by editor(s): July 20, 1995
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 2265-2276 - MSC (1991): Primary 34A34; Secondary 34A47
- DOI: https://doi.org/10.1090/S0002-9947-98-01731-0
- MathSciNet review: 1373645