The irrationality of $\log (1+1/q) \log (1-1/q)$
HTML articles powered by AMS MathViewer
- by Masayoshi Hata
- Trans. Amer. Math. Soc. 350 (1998), 2311-2327
- DOI: https://doi.org/10.1090/S0002-9947-98-01764-4
- PDF | Request permission
Abstract:
We shall show that the numbers $1, \log (1+ 1/q), \log (1-1/q)$ and $\log (1+1/q)\log (1-1/q)$ are linearly independent over $\mathbf {Q}$ for any natural number $q \ge 54$. The key is to construct explicit Padé-type approximations using Legendre-type polynomials.References
- F. Beukers, A note on the irrationality of $\zeta (2)$ and $\zeta (3)$, Bull. London Math. Soc. 11 (1979), no. 3, 268–272. MR 554391, DOI 10.1112/blms/11.3.268
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087
- A. I. Galočkin, Lower bounds of polynomials in the values of a certain class of analytic functions, Mat. Sb. (N.S.) 95(137) (1974), 396–417, 471 (Russian). MR 0357338
- —, a private communication.
- Masayoshi Hata, Legendre type polynomials and irrationality measures, J. Reine Angew. Math. 407 (1990), 99–125. MR 1048530, DOI 10.1515/crll.1990.407.99
- Masayoshi Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl. (9) 69 (1990), no. 2, 133–173. MR 1067449
- Masayoshi Hata, Rational approximations to the dilogarithm, Trans. Amer. Math. Soc. 336 (1993), no. 1, 363–387. MR 1147401, DOI 10.1090/S0002-9947-1993-1147401-5
- Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR 618278
- G. Rhin and C. Viola, On the irrationality measure of $\zeta (2)$, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 1, 85–109 (English, with English and French summaries). MR 1209696
Bibliographic Information
- Masayoshi Hata
- Affiliation: Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University, Kyoto 606-01, Japan
- Email: hata@i.h.kyoto-u.ac.jp
- Received by editor(s): April 14, 1995
- Received by editor(s) in revised form: March 21, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2311-2327
- MSC (1991): Primary 11J72; Secondary 11J82
- DOI: https://doi.org/10.1090/S0002-9947-98-01764-4
- MathSciNet review: 1390038