Weak*-closedness of subspaces of Fourier-Stieltjes algebras and weak*-continuity of the restriction map
HTML articles powered by AMS MathViewer
- by M. B. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting
- Trans. Amer. Math. Soc. 350 (1998), 2277-2296
- DOI: https://doi.org/10.1090/S0002-9947-98-01835-2
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group and $B(G)$ the Fourier-Stieltjes algebra of $G$. We study the problem of how weak*-closedness of some translation invariant subspaces of $B(G)$ is related to the structure of $G$. Moreover, we prove that for a closed subgroup $H$ of $G$, the restriction map from $B(G)$ to $B(H)$ is weak*-continuous only when $H$ is open in $G$.References
- Gilbert Arsac, Sur l’espace de Banach engendré par les coefficients d’une représentation unitaire, Publ. Dép. Math. (Lyon) 13 (1976), no. 2, 1–101 (French). MR 444833
- Larry Baggett, A separable group having a discrete dual space is compact, J. Functional Analysis 10 (1972), 131–148. MR 0346090, DOI 10.1016/0022-1236(72)90045-6
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Mohammed E. B. Bekka and Alain Valette, Lattices in semi-simple Lie groups, and multipliers of group $C^*$-algebras, Astérisque 232 (1995), 67–79. Recent advances in operator algebras (Orléans, 1992). MR 1372525
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- J. D. Dixon, The structure of linear groups, London, 1971.
- S. Echterhoff, Crossed products with continuous trace, Memoirs Amer. Math. Soc. 123 (1996), no. 586.
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424–447. MR 159898, DOI 10.1090/S0002-9947-1964-0159898-X
- J. M. G. Fell and R. S. Doran, Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles. Vol. 1, Pure and Applied Mathematics, vol. 125, Academic Press, Inc., Boston, MA, 1988. Basic representation theory of groups and algebras. MR 936628
- E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), no. 3, 459–472. MR 722579, DOI 10.1216/RMJ-1981-11-3-459
- F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295–315. MR 0246999, DOI 10.1016/0022-1236(69)90016-0
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- Pierre de la Harpe and Alain Valette, La propriété $(T)$ de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque 175 (1989), 158 (French, with English summary). With an appendix by M. Burger. MR 1023471
- Helge Elbrønd Jensen, Scattered $C^*$-algebras, Math. Scand. 41 (1977), no. 2, 308–314. MR 482242, DOI 10.7146/math.scand.a-11723
- Eberhard Kaniuth, Der Typ der regulären Darstellung diskreter Gruppen, Math. Ann. 182 (1969), 334–339 (German). MR 260896, DOI 10.1007/BF01350709
- Eberhard Kaniuth, Weak containment and tensor products of group representations. II, Math. Ann. 270 (1985), no. 1, 1–15. MR 769602, DOI 10.1007/BF01455523
- S. Minakshi Sundaram, On non-linear partial differential equations of the hyperbolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 495–503. MR 0000089
- Eberhard Kaniuth, On the conjugation representation of a locally compact group, Math. Z. 202 (1989), no. 2, 275–288. MR 1013090, DOI 10.1007/BF01215260
- Eberhard Kaniuth and Annette Markfort, The conjugation representation and inner amenability of discrete groups, J. Reine Angew. Math. 432 (1992), 23–37. MR 1184756
- Eberhard Kaniuth and Annette Markfort, Locally compact groups whose conjugation representations satisfy a Kazhdan type property or have countable support, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 1, 79–97. MR 1274160, DOI 10.1017/S030500410007239X
- Anthony To Ming Lau and Peter F. Mah, Normal structure in dual Banach spaces associated with a locally compact group, Trans. Amer. Math. Soc. 310 (1988), no. 1, 341–353. MR 937247, DOI 10.1090/S0002-9947-1988-0937247-0
- Anthony To Ming Lau and Ali Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), no. 1, 321–359. MR 1147402, DOI 10.1090/S0002-9947-1993-1147402-7
- John R. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85–108. MR 318390, DOI 10.1090/S0002-9947-1973-0318390-5
- Viktor Losert, Properties of the Fourier algebra that are equivalent to amenability, Proc. Amer. Math. Soc. 92 (1984), no. 3, 347–354. MR 759651, DOI 10.1090/S0002-9939-1984-0759651-8
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Keith F. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), no. 3, 211–224. MR 425007, DOI 10.1007/BF01362578
- Rudolph E. Langer, The boundary problem of an ordinary linear differential system in the complex domain, Trans. Amer. Math. Soc. 46 (1939), 151–190 and Correction, 467 (1939). MR 84, DOI 10.1090/S0002-9947-1939-0000084-7
- P. S. Wang, On isolated points in the dual spaces of locally compact groups, Math. Ann. 218 (1975), no. 1, 19–34. MR 384993, DOI 10.1007/BF01350065
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- M. B. Bekka
- Affiliation: Département de Mathématiques, Université de Metz, F - 57045 Metz, France
- MR Author ID: 33840
- Email: bekka@poncelet.univ-metz.fr
- E. Kaniuth
- Affiliation: Fachbereich Mathematik/Informatik, Universität Paderborn, D - 33095 Paderborn, Germany
- Email: kaniuth@uni-paderborn.de
- A. T. Lau
- Affiliation: Department of Mathematical Sciences, University of Alberta, Edmonton, Canada T6G 2G1
- MR Author ID: 110640
- Email: tlau@vega.math.ualberta.ca
- G. Schlichting
- Affiliation: Mathematisches Institut, Technische Universität München, D - 80290 München, Germany
- Email: gschlich@mathematik.tu-muenchen.de
- Received by editor(s): December 15, 1995
- Additional Notes: Work supported by NATO collaborative research grant CRG 940184
- © Copyright 1997 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2277-2296
- MSC (1991): Primary 22D10, 43A30
- DOI: https://doi.org/10.1090/S0002-9947-98-01835-2
- MathSciNet review: 1401762
Dedicated: Dedicated to Professor Elmar Thoma on the occasion of his seventieth birthday