Approximation by polynomials with nonnegative coefficients and the spectral theory of positive operators
HTML articles powered by AMS MathViewer
- by Roger D. Nussbaum and Bertram Walsh
- Trans. Amer. Math. Soc. 350 (1998), 2367-2391
- DOI: https://doi.org/10.1090/S0002-9947-98-01998-9
- PDF | Request permission
Abstract:
For $\Sigma$ a compact subset of $\mathbf {C}$ symmetric with respect to conjugation and $f: \Sigma \to \mathbf {C}$ a continuous function, we obtain sharp conditions on $f$ and $\Sigma$ that insure that $f$ can be approximated uniformly on $\Sigma$ by polynomials with nonnegative coefficients. For $X$ a real Banach space, $K \subseteq X$ a closed but not necessarily normal cone with $\overline {K - K} = X$, and $A: X \to X$ a bounded linear operator with $A[K] \subseteq K$, we use these approximation theorems to investigate when the spectral radius $\mathrm {r}(A)$ of $A$ belongs to its spectrum $\sigma (A)$. A special case of our results is that if $X$ is a Hilbert space, $A$ is normal and the 1-dimensional Lebesgue measure of $\sigma (i(A - A^{*}))$ is zero, then $\mathrm {r}(A) \in \sigma (A)$. However, we also give an example of a normal operator $A = - U -\alpha I$ (where $U$ is unitary and $\alpha > 0$) for which $A[K] \subseteq K$ and $\mathrm {r}(A) \notin \sigma (A)$.References
- I. J. Schoenberg, The Landau problem. I. The case of motions on sets, Nederl. Akad. Wetensch. Indag. Math. 40 (1978), no. 2, 276–286. MR 492137
- Ludwig Bieberbach, Lehrbuch der Funktionentheorie. Band I: Elemente der Funktionentheorie. , Bibliotheca Mathematica Teubneriana, Band 21, Johnson Reprint Corp., New York-London, 1968 (German). First reprinting. MR 0249578
- Errett Bishop, A minimal boundary for function algebras, Pacific J. Math. 9 (1959), 629–642. MR 109305
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936
- Shmuel Kantorovitz, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc. 115 (1965), 194–224. MR 199712, DOI 10.1090/S0002-9947-1965-0199712-0
- R. D. Nussbaum, Eigenvectors of order-preserving linear operators, [accepted by] J. London Math. Soc..
- Helmut Schaefer, Halbgeordnete lokalkonvexe Vektorräume. II, Math. Ann. 138 (1959), 259–286 (German). MR 106402, DOI 10.1007/BF01342907
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- Laurent Schwartz, Théorie des distributions à valeurs vectorielles. I, Ann. Inst. Fourier (Grenoble) 7 (1957), 1–141 (French). MR 107812
- E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1939 (corr. printing 1968).
- J. F. Toland, Self-adjoint operators and cones, J. London Math. Soc. (2) 53 (1996), no. 1, 167–183. MR 1362694, DOI 10.1112/jlms/53.1.167
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Bibliographic Information
- Roger D. Nussbaum
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
- MR Author ID: 132680
- Email: nussbaum@math.rutgers.edu
- Bertram Walsh
- Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
- Email: bwalsh@math.rutgers.edu
- Received by editor(s): December 26, 1995
- Received by editor(s) in revised form: July 1, 1996
- Additional Notes: The first author was partially supported by NSF grant DMS 9401823
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2367-2391
- MSC (1991): Primary 30C10, 47B15, 47B65
- DOI: https://doi.org/10.1090/S0002-9947-98-01998-9
- MathSciNet review: 1433126
Dedicated: Dedicated to Helmut H. Schaefer on the 70th anniversary of his birth