Topological conditions for the existence of absorbing Cantor sets
HTML articles powered by AMS MathViewer
- by Henk Bruin
- Trans. Amer. Math. Soc. 350 (1998), 2229-2263
- DOI: https://doi.org/10.1090/S0002-9947-98-02109-6
- PDF | Request permission
Abstract:
This paper deals with strange attractors of S-unimodal maps $f$. It generalizes earlier results in the sense that very general topological conditions are given that either
-
[i)] guarantee the existence of an absorbing Cantor set provided the critical point of $f$ is sufficiently degenerate, or
-
[ii)] prohibit the existence of an absorbing Cantor set altogether.
As a by-product we obtain very weak topological conditions that imply the existence of an absolutely continuous invariant probability measure for $f$.
References
- H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), no. 3, 433–451. MR 1293402, DOI 10.1017/S0143385700007963
- H. Bruin, Invariant measures of interval maps, Thesis, Delft. (1994).
- H. Bruin, Combinatorics of the kneading map, Proceedings of the Conference “Thirty Years after Sharkovskiĭ’s Theorem: New Perspectives” (Murcia, 1994), 1995, pp. 1339–1349. MR 1361922, DOI 10.1142/S0218127495001010
- H. Bruin, G. Keller, T. Nowicki, and S. van Strien, Wild Cantor attractors exist, Ann. of Math. (2) 143 (1996), no. 1, 97–130. MR 1370759, DOI 10.2307/2118654
- Chuan Xi Wu, A note on stable harmonic mappings, J. Math. (Wuhan) 11 (1991), no. 1, 72–76 (Chinese, with English summary). MR 1139675
- A. M. Blokh and M. Yu. Lyubich, Measurable dynamics of $S$-unimodal maps of the interval, Ann. Sci. École Norm. Sup. (4) 24 (1991), no. 5, 545–573. MR 1132757
- John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR 553966
- John Guckenheimer and Stewart Johnson, Distortion of $S$-unimodal maps, Ann. of Math. (2) 132 (1990), no. 1, 71–130. MR 1059936, DOI 10.2307/1971501
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- Jean-Marc Gambaudo and Charles Tresser, A monotonicity property in one-dimensional dynamics, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 213–222. MR 1185089, DOI 10.1090/conm/135/1185089
- Franz Hofbauer, The topological entropy of the transformation $x\mapsto ax(1-x)$, Monatsh. Math. 90 (1980), no. 2, 117–141. MR 595319, DOI 10.1007/BF01303262
- Franz Hofbauer and Gerhard Keller, Some remarks on recent results about $S$-unimodal maps, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), no. 4, 413–425. Hyperbolic behaviour of dynamical systems (Paris, 1990). MR 1096100
- Stewart D. Johnson, Singular measures without restrictive intervals, Comm. Math. Phys. 110 (1987), no. 2, 185–190. MR 887994
- M. Jakobson, G. Świa̧tek, Metric properties of non-renormalizable S-unimodal maps, Preprint IHES/M/91/16 (1991).
- Michael Jakobson and Grzegorz Świątek, Metric properties of non-renormalizable $S$-unimodal maps. I. Induced expansion and invariant measures, Ergodic Theory Dynam. Systems 14 (1994), no. 4, 721–755. MR 1304140, DOI 10.1017/S0143385700008130
- M. Jakobson, G. Świa̧tek, Quasisymmetric conjugacies between unimodal maps, Preprint Stony Brook 16 (1991).
- Gerhard Keller and Tomasz Nowicki, Fibonacci maps re(al)visited, Ergodic Theory Dynam. Systems 15 (1995), no. 1, 99–120. MR 1314971, DOI 10.1017/S0143385700008269
- Mikhail Lyubich, Combinatorics, geometry and attractors of quasi-quadratic maps, Ann. of Math. (2) 140 (1994), no. 2, 347–404. MR 1298717, DOI 10.2307/2118604
- Mikhail Lyubich, Milnor’s attractors, persistent recurrence and renormalization, Topological methods in modern mathematics (Stony Brook, NY, 1991) Publish or Perish, Houston, TX, 1993, pp. 513–541. MR 1215975
- Mikhail Lyubich and John Milnor, The Fibonacci unimodal map, J. Amer. Math. Soc. 6 (1993), no. 2, 425–457. MR 1182670, DOI 10.1090/S0894-0347-1993-1182670-0
- M. Martens, Interval Dynamics, Thesis, Delft, 1990.
- Marco Martens, Distortion results and invariant Cantor sets of unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 331–349. MR 1279474, DOI 10.1017/S0143385700007902
- Radu Bǎdescu, On a problem of Goursat, Gaz. Mat. 44 (1939), 571–577. MR 0000087
- J. Milnor, Local connectivity of Julia sets; Expository lectures, Preprint StonyBrook # 1992/11.
- Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171, DOI 10.1007/978-3-642-78043-1
- T. Nowicki and S. van Strien, Absolutely continuous invariant measures for $C^2$ unimodal maps satisfying the Collet-Eckmann conditions, Invent. Math. 93 (1988), no. 3, 619–635. MR 952285, DOI 10.1007/BF01410202
Bibliographic Information
- Henk Bruin
- Affiliation: Department of Mathematics, Royal Institute of Technology, 10044 Stockholm, Sweden
- MR Author ID: 329851
- Email: bruin@math.kth.se
- Received by editor(s): June 1, 1995
- Additional Notes: Supported by the Netherlands Organization for Scientific Research (NWO). The research for this paper was carried out during the author’s stay at the University of Erlangen-Nürnberg.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2229-2263
- MSC (1991): Primary 58F13, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-98-02109-6
- MathSciNet review: 1458316