Singularity of self-similar measures with respect to Hausdorff measures
Authors:
Manuel Morán and José-Manuel Rey
Journal:
Trans. Amer. Math. Soc. 350 (1998), 2297-2310
MSC (1991):
Primary 28A78, 28A80
DOI:
https://doi.org/10.1090/S0002-9947-98-02218-1
MathSciNet review:
1475691
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Besicovitch (1934) and Eggleston (1949) analyzed subsets of points of the unit interval with given frequencies in the figures of their base–$p$ expansions. We extend this analysis to self–similar sets, by replacing the frequencies of figures with the frequencies of the generating similitudes. We focus on the interplay among such sets, self–similar measures, and Hausdorff measures. We give a fine–tuned classification of the Hausdorff measures according to the singularity of the self–similar measures with respect to those measures. We show that the self–similar measures are concentrated on sets whose frequencies of similitudes obey the Law of the Iterated Logarithm.
- Christoph Bandt, Deterministic fractals and fractal measures, Rend. Istit. Mat. Univ. Trieste 23 (1991), no. 1, 1–40 (1993). School on Measure Theory and Real Analysis (Grado, 1991). MR 1248650
- Michael Barnsley, Fractals everywhere, Academic Press, Inc., Boston, MA, 1988. MR 977274
- A.S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1934), 321-330.
- Patrick Billingsley, Hausdorff dimension in probability theory, Illinois J. Math. 4 (1960), 187–209. MR 131903
- Robert Cawley and R. Daniel Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92 (1992), no. 2, 196–236. MR 1155465, DOI https://doi.org/10.1016/0001-8708%2892%2990064-R
- M.J.P. Cooper, The Hausdorff measure of the Besicovitch–Eggleston set, preprint.
- Anca Deliu, J. S. Geronimo, R. Shonkwiler, and D. Hardin, Dimensions associated with recurrent self-similar sets, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 2, 327–336. MR 1113431, DOI https://doi.org/10.1017/S0305004100070407
- H.G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser. 20 (1949), 31-36.
- K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (1994), no. 3, 681–702. MR 1284660, DOI https://doi.org/10.1007/BF02213576
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI https://doi.org/10.1512/iumj.1981.30.30055
- M. Moran, Hausdorff measure of infinitely generated self-similar sets, Monatsh. Math. 122 (1996), no. 4, 387–399. MR 1418125, DOI https://doi.org/10.1007/BF01326037
- M. Morán and J.-M. Rey, Geometry of self–similar measures, Ann. Acad. Sci. Fenn. Mathematica 22 (1997), 365–386.
- P.A.P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Phil. Soc. 42 (1946), 15-23.
- N. Patzschke, Self-conformal multifractal measures, preprint.
- Feliks Przytycki, Mariusz Urbański, and Anna Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. I, Ann. of Math. (2) 130 (1989), no. 1, 1–40. MR 1005606, DOI https://doi.org/10.2307/1971475
- M. S. Raghunathan, A proof of Oseledec’s multiplicative ergodic theorem, Israel J. Math. 32 (1979), no. 4, 356–362. MR 571089, DOI https://doi.org/10.1007/BF02760464
- C. A. Rogers and S. J. Taylor, Functions continuous and singular with respect to a Hausdorff measure, Mathematika 8 (1961), 1–31. MR 130336, DOI https://doi.org/10.1112/S0025579300002084
- Andreas Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), no. 1, 111–115. MR 1191872, DOI https://doi.org/10.1090/S0002-9939-1994-1191872-1
- M. Smorodinsky, Singular measures and Hausdorff measures, Israel J. Math. 7 (1969), 203–206. MR 250350, DOI https://doi.org/10.1007/BF02787612
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI https://doi.org/10.1017/S0305004100059119
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Lai Sang Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems 2 (1982), no. 1, 109–124. MR 684248, DOI https://doi.org/10.1017/s0143385700009615
Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 28A78, 28A80
Retrieve articles in all journals with MSC (1991): 28A78, 28A80
Additional Information
Manuel Morán
Affiliation:
Departamento de Análisis Económico, Universidad Complutense, Campus de Somo- saguas, 28223 Madrid. Spain
Email:
ececo06@sis.ucm.es
José-Manuel Rey
Affiliation:
Departamento de Análisis Económico, Universidad Complutense, Campus de Somo- saguas, 28223 Madrid. Spain
Email:
ececo07@sis.ucm.es
Keywords:
Self–similarity,
Hausdorff measures,
dimension function,
Law of the Iterated Logarithm.
Received by editor(s):
January 17, 1996
Additional Notes:
Research partially supported by Ente Público Puertos del Estado
Article copyright:
© Copyright 1998
American Mathematical Society