Sum theorems for monotone operators and convex functions
HTML articles powered by AMS MathViewer
- by S. Simons
- Trans. Amer. Math. Soc. 350 (1998), 2953-2972
- DOI: https://doi.org/10.1090/S0002-9947-98-02045-5
- PDF | Request permission
Original Article: Tran. Amer. Math. Soc. 350 (1998), no. 7, 2953-2972.
Abstract:
In this paper, we derive sufficient conditions for the sum of two or more maximal monotone operators on a reflexive Banach space to be maximal monotone, and we achieve this without any renorming theorems or fixed-point-related concepts. In the course of this, we will develop a generalization of the uniform boundedness theorem for (possibly nonreflexive) Banach spaces. We will apply this to obtain the Fenchel Duality Theorem for the sum of two or more proper, convex lower semicontinuous functions under the appropriate constraint qualifications, and also to obtain additional results on the relation between the effective domains of such functions and the domains of their subdifferentials. The other main tool that we use is a standard minimax theorem.References
- Hédy Attouch and Haïm Brezis, Duality for the sum of convex functions in general Banach spaces, Aspects of mathematics and its applications, North-Holland Math. Library, vol. 34, North-Holland, Amsterdam, 1986, pp. 125–133. MR 849549, DOI 10.1016/S0924-6509(09)70252-1
- H. Attouch, H. Riahi and M. Théra, Somme ponctuelle d’opérateurs maximaux monotones, Serdica 22 (1996), 165–190.
- Jean-Pierre Aubin and Ivar Ekeland, Applied nonlinear analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 749753
- J. M. Borwein, A Lagrange multiplier theorem and a sandwich theorem for convex relations, Math. Scand. 48 (1981), no. 2, 189–204. MR 631335, DOI 10.7146/math.scand.a-11911
- J. M. Borwein, Adjoint process duality, Math. Oper. Res. 8 (1983), no. 3, 403–434. MR 716121, DOI 10.1287/moor.8.3.403
- Jon Borwein and Simon Fitzpatrick, Local boundedness of monotone operators under minimal hypotheses, Bull. Austral. Math. Soc. 39 (1989), no. 3, 439–441. MR 995141, DOI 10.1017/S000497270000335X
- H. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math. 23 (1970), 123–144. MR 257805, DOI 10.1002/cpa.3160230107
- Felix E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89–113. MR 223942, DOI 10.1007/BF01418765
- M. Coodey and S. Simons, The convex function determined by a multifunction, Bull. Austral. Math. Soc. 54 (1996), 87–97.
- L.-J. Chu, On the sum of monotone operators, Michigan Math. J. 43 (1996), 273–289.
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335
- Heinz König, Über das von Neumannsche Minimax-Theorem, Arch. Math. (Basel) 19 (1968), 482–487 (German). MR 240600, DOI 10.1007/BF01898769
- Robert R. Phelps, Convex functions, monotone operators and differentiability, 2nd ed., Lecture Notes in Mathematics, vol. 1364, Springer-Verlag, Berlin, 1993. MR 1238715
- R. R. Phelps, Lectures on Maximal Monotone Operators, 2nd Summer School on Banach Spaces, Related Areas and Applications, Prague and Paseky, August 15–28, 1993. (Preprint, 30 pages.), TeX file: $<$math.okstate.edu/pub/banach/phelpsmaxmonop.tex$>$ Banach space bulletin board archive, Posted Nov. 1993.
- Stephen M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), no. 2, 130–143. MR 430181, DOI 10.1287/moor.1.2.130
- R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397–407. MR 253014
- R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 282272, DOI 10.1090/S0002-9947-1970-0282272-5
- Stephen Simons, Critères de faible compacité en termes du théorème du minimaux, Séminaire Choquet, 10e année (1970/71), Initiation à l’analyse, Fasc. 2, Secrétariat Mathématique, Paris, 1971, pp. Exp. No. 24, 5 (French). MR 0477705
- S. Simons, The range of a monotone operator, J. Math. Anal. Appl. 199 (1996), no. 1, 176–201. MR 1381386, DOI 10.1006/jmaa.1996.0135
- Corneliu Ursescu, Multifunctions with convex closed graph, Czechoslovak Math. J. 25(100) (1975), no. 3, 438–441. MR 388032
- Constantin Zălinescu, Letter to the editor: on J. M. Borwein’s paper: “Adjoint process duality” [Math. Oper. Res. 8 (1983), no. 3, 403–434; MR0716121 (85h:90092)], Math. Oper. Res. 11 (1986), no. 4, 692–698. MR 865564, DOI 10.1287/moor.11.4.692
Bibliographic Information
- S. Simons
- Affiliation: Department of Mathematics, University of California, Santa Barbara, California 93106-3080
- MR Author ID: 189831
- Email: simons@math.ucsb.edu
- Received by editor(s): July 16, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2953-2972
- MSC (1991): Primary 47H05, 46B10; Secondary 49J35, 46A30
- DOI: https://doi.org/10.1090/S0002-9947-98-02045-5
- MathSciNet review: 1443892