A Note on the Monomial Conjecture
HTML articles powered by AMS MathViewer
- by S. P. Dutta
- Trans. Amer. Math. Soc. 350 (1998), 2871-2878
- DOI: https://doi.org/10.1090/S0002-9947-98-02158-8
- PDF | Request permission
Abstract:
Several cases of the monomial conjecture are proved. An equivalent form of the direct summand conjecture is discussed.References
- Sankar P. Dutta, On the canonical element conjecture, Trans. Amer. Math. Soc. 299 (1987), no. 2, 803–811. MR 869233, DOI 10.1090/S0002-9947-1987-0869233-2
- S. P. Dutta, Syzygies and homological conjectures, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 139–156. MR 1015516, DOI 10.1007/978-1-4612-3660-3_{7}
- S. P. Dutta, Dualizing complex and the canonical element conjecture, J. London Math. Soc. (2) 50 (1994), no. 3, 477–487. MR 1299452, DOI 10.1112/S0024610797005292
- S. P. Dutta, Dualizing Complex and the Canonical Element Conjecture II, Journal of the London Math. Society (2) 56 (1997), 49–63.
- Shiro Goto, On the associated graded rings of parameter ideals in Buchsbaum rings, J. Algebra 85 (1983), no. 2, 490–534. MR 725097, DOI 10.1016/0021-8693(83)90109-6
- M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43. MR 349656
- Melvin Hochster, Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553. MR 723406, DOI 10.1016/0021-8693(83)90092-3
- Jee Koh, Degree $p$ extensions of an unramified regular local ring of mixed characteristic $p$, J. Algebra 99 (1986), no. 2, 310–323. MR 837546, DOI 10.1016/0021-8693(86)90029-3
- Stephen Lichtenbaum, On the vanishing of $\textrm {Tor}$ in regular local rings, Illinois J. Math. 10 (1966), 220–226. MR 188249
- Masayoshi Nagata, Local rings, Robert E. Krieger Publishing Co., Huntington, N.Y., 1975. Corrected reprint. MR 0460307
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468
- R. Y. Sharp and H. Zakeri, Generalized fractions and the monomial conjecture, J. Algebra 92 (1985), no. 2, 380–388. MR 778456, DOI 10.1016/0021-8693(85)90128-0
- Jan R. Strooker and Jürgen Stückrad, Monomial conjecture and complete intersections, Manuscripta Math. 79 (1993), no. 2, 153–159. MR 1216771, DOI 10.1007/BF02568334
Bibliographic Information
- S. P. Dutta
- Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801,
- Email: dutta@math.uiuc.edu
- Received by editor(s): July 20, 1996
- Additional Notes: This work was partially supported by an NSA grant and an NSF grant.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 2871-2878
- MSC (1991): Primary 13D02; Secondary 13H10
- DOI: https://doi.org/10.1090/S0002-9947-98-02158-8
- MathSciNet review: 1466948