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BASED ALGEBRAS AND STANDARD BASES
FOR QUASI-HEREDITARY ALGEBRAS

JIE DU AND HEBING RUI

Abstract. Quasi-hereditary algebras can be viewed as a Lie theory approach
to the theory of finite dimensional algebras. Motivated by the existence of
certain nice bases for representations of semisimple Lie algebras and algebraic
groups, we will construct in this paper nice bases for (split) quasi-hereditary
algebras and characterize them using these bases. We first introduce the notion
of a standardly based algebra, which is a generalized version of a cellular
algebra introduced by Graham and Lehrer, and discuss their representation
theory. The main result is that an algebra over a commutative local noetherian
ring with finite rank is split quasi-hereditary if and only if it is standardly full-
based. As an application, we will give an elementary proof of the fact that
split symmetric algebras are not quasi-hereditary unless they are semisimple.
Finally, some relations between standardly based algebras and cellular algebras
are also discussed.

Introduction

Quasi-hereditary algebras were introduced by E. Cline, B. Parshall and L. Scott
[S], [CPS1] around 1987 in order to deal with certain categories, called highest
weight categories, which arise from the representation theory of semisimple Lie al-
gebras and algebraic groups. Thus, they have important applications to Lie theory.
Quasi-hereditary algebras have also been extensively studied in the context of ring
theory (see, e.g., [DR1] and [DR2]), where ideas and techniques such as weights,
Weyl modules, and good filtrations from the representation theory of Lie algebras
are brought into ring theory. So we may regard the introduction of quasi-hereditary
algebras as a Lie theory approach to the theory of finite dimensional algebras.

This paper is another attempt to bring some useful ideas and techniques which
appeared in the study of Lie algebra representations in the late 70’s (see [KL]) into
the study of quasi-hereditary algebras. We shall look at these algebras through
the existence of certain nice bases which locally determine (or are determined by)
bases for standard and costandard modules. The motivation of this work is behind
some recent developments on q-Schur algebras (see [Du1], [G3], [Gr]) and on cellular
algebras [GL]. In [Du1], bases analogous to the Kazhdan-Lusztig bases for Hecke
algebras are introduced for q-Schur algebras, while in [G3], [Gr] another interesting
basis — the q-codeterminant basis — is introduced for a q-Schur algebra (see also
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[Du2] for a special case). Remarkably, both bases share some properties (see [GL])
such as (a) both respect the partial order on the poset of dominant weights; (b)
both give (or are determined by) important bases for standard modules; (c) the
quasi-heredity of q-Schur algebras can be derived from either of the bases. This
observation gives rise to a natural question: Are there such bases for arbitrary
quasi-hereditary algebras? We shall answer the question for split quasi-hereditary
algebras in this paper.

Motivated from Hecke algebras and their Kazhdan-Lusztig bases (cf. [KL]), we
introduce the notion of based algebras A on a poset Λ with a defining base B in
section one. These are a class of algebras whose defining bases are fibred over
Λ: B =

⋃
λ∈Λ Bλ and the basis elements over a coideal of Λ span an ideal of A.

So we may filter A with a sequence of ideals whose sections, called strata below,
are indexed by the elements in Λ. A Hecke algebra with its KL basis is a based
algebra over the poset of two-sided cells. Unlike the situation for Hecke algebras,
every single fibre Bλ is a two-sided quasi-cell, i.e., a union of two-sided cells in the
sense of [Lu, 29.4]. In order to deal with an approximation to one-sided cells, we
introduced the notion of standardly based algebras. This is a generalized version
of cellular algebras [GL] obtained by dropping the requirement of the existence of
a certain involution on A. Notice that, by the definition of a standardly based
algebra, the fibre Bλ of the defining base is only partitioned into left or right quasi-
cells, i.e., unions of left or right cells, and the cardinality of a left quasi-cell may be
different from that of right quasi-cells. Bilinear forms can be introduced on each
stratum in a standardly based algebra. When the images of these forms are equal to
the ground ring, we say that the standardly based algebra is standardly full-based.
Such algebras are the main objects investigated in this paper.

In section two, we study the representation theory of standardly based algebras.
Standard and costandard modules are defined by the standard defining base. By
considering the restriction of the bilinear form to a stratum, we obtain a sufficient
condition for the standard modules to be cyclic. When k is a field, simple modules
and their projective covers are discussed. Compare those in [GL].

The main result of the paper is given in sections three and four. After a quick re-
view of integral quasi-hereditary algebras, we prove in section three that every stan-
dardly full-based algebra over a commutative noetherian ring k is quasi-hereditary.
If in addition k is local, then the algebra is split. Thus the defining base gives rise
to bases for standard modules in the corresponding highest weight category. In
section four, we prove that every split quasi-hereditary algebra A over a commu-
tative local noetherian ring is standardly full-based. The proof of this result gives
an inductive construction of a standard defining base via the given bases for every
standard (left and right) A-module. Thus we establish a correspondence between
(global) standard defining bases and (local) bases for standard A-modules. So we
shall call a standard defining base of A a standard basis. In particular, if k is an
algebraically closed field, then quasi-hereditary algebras over k can be characterized
as standardly full-based algebras. We remark that our proof uses the results on k-
finite highest weight categories developed in [DS]. As an application of our theory,
we shall present at the end of section four a simple and direct proof for the fact that
a split, symmetric and nonsemisimple algebra over a field is not quasi-hereditary.

We shall give two more applications of our main results. In section five, we
present two different standard bases for q-Schur algebras. The first is obtained by
showing an existing basis to be a standard defining base. The second is constructed
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inductively as shown in the proof of Theorem (4.2.1). Standard duality and invo-
lutions will be introduced in the last section. We shall prove that every standardly
based algebra over a commutative ring with a standard involution is cellular. For
split quasi-hereditary algebras, distinguished standard involutions are introduced,
and we shall prove that a split quasi-hereditary algebra is cellular if and only if it
has a distinguished standard involution.

Our main result also gives a new criterion for integral quasi-hereditary algebras
as indicated in the examples (1.3.4) and (5.6.1). In these examples, we give a new
proof for the quasi-heredity of Borel subalgebras of Schur and q-Schur algebras
where the standard defining bases are simply the natural bases. While completing
the present paper, the authors learned that a different criterion for those quasi-
hereditary algebras over an integral domain whose extension to the quotient field
is semisimple has been obtained by S. König [K].

1. Based and standardly based algebras

In this section, we shall introduce the notion of based algebras and discuss certain
elementary properties of these algebras.

Throughout, let k be a commutative ring (with 1). By a k-algebra A (or an
algebra over k) we mean that A is an associative algebra over k with identity
element 1.

1.1 Based algebras. Let (Λ, 6) be a partial ordered set. A subset Φ ⊆ Λ is called
an ideal of Λ if λ 6 µ implies λ ∈ Φ for any µ ∈ Φ and λ ∈ Λ. A subset Γ is said
to be a coideal if Λ\Γ is an ideal.

(1.1.1) Definition. Let A be a k-algebra and Λ a poset. A is called a based algebra
on Λ if the following conditions hold.

(a) A has a basis B, fibred over Λ. That is, B is a disjoint union of subsets Bλ

(λ ∈ Λ). The basis B will be called a defining base.
(b) For any a ∈ A and b ∈ Bλ, the products ab and ba are linear combinations

of basis elements c ∈ Bµ with µ > λ.

From the definition, one sees easily that, if Γ is a coideal of Λ, then the submodule
A(Γ) spanned by

⋃
λ∈Γ Bλ is a two-sided ideal of A. Thus, if Γ′ = Λ\Γ, then

A[Γ′] = A/A(Γ) is also a based algebra on the poset Γ′.
If Λ is finite and ordered linearly,

Λ = {λ1, · · · , λm}, compatible with 6, i.e., λi > λj ⇒ i < j,(1.1.2)

then we have a filtration

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm = A,(1.1.3)

where Ji = A({λ1, · · · , λi}) for all i = 1, · · · , m. We shall call (1.1.3) a based
filtration of A. Note that, for λ ∈ Λ, the set Λ>λ = {µ ∈ Λ | µ > λ} is a coideal
of Λ. Let A>λ = A(Λ>λ), A>λ = A(Λ>λ\{λ}) and Aλ = A>λ/A>λ. Thus, Aλ is
an (A, A)-bimodule and is also an ideal of the quotient algebra A/A>λ. Note also
that, as a k-module, Aλ can be regarded as the free submodule of A spanned by
Bλ.

From section two onwards, we shall only consider k-finite based algebras, i.e., A
is finitely generated as a k-module. Thus both B and Λ are finite.
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(1.1.4) Examples. (a) Any finite dimensional algebra over a field k is a based
algebra on the ordered set {1, 2, · · · , m} if A has a filtration (1.1.3) of two-sided
ideals.

(b) Let H = HA,q be the Iwahori-Hecke algebra over A = Z[t, t−1] (q = t2)
associated with a Coxeter system (W, S). Then H has the Iwahori basis Tw, w ∈ W .
In [KL] Kazhdan and Lusztig defined a new basis B = {Bw|w ∈ W} for H. (Bw

is denoted by C′w in [KL].) Using this basis, W is divided into equivalence classes,
called cells, via certain equivalence relations associated to preorders 6L, 6R, 6LR.
Let Λ be the set of two-sided cells with the reversed order. That is, if λ, µ ∈ Λ are
two-sided cells of W , then λ 6 µ iff x 6LR y for any x ∈ µ and y ∈ λ. By the
definition of 6L and 6R [KL], for any x, y ∈ W with x ∈ λ, y ∈ µ we have

BxBy =
∑
z∈ν

ν∈Λ>λ∩Λ>µ

hx,y,zBz .

Therefore, H is a based algebra on Λ with defining base B. Note that Bλ = {Bw |
w ∈ λ} for each λ ∈ Λ, and a filtration on Λ in this case is a cell filtration in
the sense that each section of the filtration is a two-sided H-module defined by a
two-sided cell.

(c) Let (W, S) be a finite Coxeter group. For any J ⊂ S let WJ be the subgroup
of W generated by J and xJ =

∑
x∈WJ

Tx. We define, following [Du4, 1.4],

A = Sq(W ) = EndH

⊕
J⊆S

xJH
 .

This is a centralising algebra of a q-permutation module and has a natural basis
indexed by D(W ) =

⋃
I,J⊆S WI\W/WJ . Motivated by the Kazhdan-Lusztig bases

for Hecke algebras, the first author introduced [Du4] an analogous basis for Sq(W ).
Let B = {θD | D ∈ D(W )} denote this basis. Using this basis, the set D(W )
is divided into two-sided cells and two elements D, D′ ∈ D(W ) are in the same
two-sided cell if and only if wD and wD′ are in the same two-sided cell of W , where
wX denotes the longest word in X . Let Λ be the set of two-sided cells of D(W ).
Clearly, Λ can be identified with the set of two-sided cells of W . For any λ ∈ Λ
denote Bλ = {θD|D ∈ D(W ), D ∈ λ}. Then, for any θD ∈ Bλ and θD′ ∈ Bµ, we
have

θD · θD′ ∈
∑

θ∈Bν ,ν>λ,µ

Z[t, t−1]θ.

Therefore A is a based algebra on Λ with the defining base B.

Following [Lu, 29.4], we see that every basis B for an associative algebra A is
divided into cells via certain equivalence relations on B which are defined as follows:

(1.1.5) Definition. Let A be a k-algebra and B a k-basis for A. Let the elements
cb,b′,b′′ ∈ k with b, b′, b′′ ∈ B denote the structure constants of A, i.e., they satisfy
bb′ =

∑
b′′∈B cb,b′,b′′b

′′. Then for b, b′ ∈ B we say that b′ 6L b (resp. b′ 6R b) if there
are sequences b1 = b, b2, · · · , bn = b′ and β1, · · · , βn−1 in B such that cβi,bi,bi+1 6= 0
(resp. cbi,βi,bi+1 6= 0) for all i = 1, · · · , n− 1. These are preorders on B. We define
6LR to be the preorder on B generated by 6L and 6R. For x ∈ {L, R, LR} and
b, b′ ∈ B we say b ∼x b′ if b 6x b′ 6x b. Thus ∼L, ∼R and ∼LR are equivalence
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relations on B. The corresponding equivalence classes are called left, right and
two-sided cells of B respectively.

This definition raises a very general question: How to find the cell decomposition
for a given basis. As seen from the case of Iwahori-Hecke algebras, the answer to this
question for some “nice” basis is important in the representations of this algebra.

A defining base B of a based algebra A is a cruder model of those “nice” bases.
We know from the definition that B is partitioned into subsets Bλ and, from (1.1.3),
we have a two-sided module – a section of (1.1.3) – associated to each subset Bλ.
Furthermore, we have the following.

(1.1.6) Lemma. Let (A,B) be a based algebra on Λ. Then, for any λ ∈ Λ, Bλ is
a disjoint union of two-sided cells of B.

Proof. By (1.1.1) and (1.1.5), if b ∈ Bλ and b′ ∈ Bµ satisfy b 6LR b′, then λ > µ.
Thus, if b ∼LR b′ then λ = µ.

We shall call Bλ a two-sided quasi-cell of B. Clearly, the set of two-sided quasi-
cells is a poset with order induced by 6LR and fibred over Λ. If Bλ is a single
two-sided cell for each λ ∈ Λ, then (1.1.3) becomes a cell filtration, as seen in the
example (1.1.4).

1.2 Standardly based algebras. The based algebras tell us nothing about left
or right cells. In order to create a model for those one-sided cells we introduce the
following.

(1.2.1) Definition. Let A be a based algebra on the poset Λ with defining base
B =

⋃
λ∈Λ Bλ. We say that the defining base B is standard if the following conditions

hold:
(a) For any λ ∈ Λ there are index sets I(λ) and J(λ) such that

Bλ = {aλ
ij | (i, j) ∈ I(λ)× J(λ)}.

(b) For any a ∈ A, aλ
ij ∈ B, we have

a · aλ
ij ≡

∑
i′∈I(λ)

fi′,λ(a, i)aλ
i′j mod (A>λ),

aλ
ij · a ≡

∑
j′∈J(λ)

fλ,j′(j, a)aλ
ij′ mod (A>λ),

(1.2.2)

where fi′,λ(a, i), fλ,j′(j, a) ∈ k are independent of j and i, respectively.
A based algebra (A,B) is said to be standardly based if B is standard. We shall

also call B a defining base of the standardly based algebra A.

We observe from (1.2.2) that the k-span of the elements {aλ
ij}, where j is con-

stant, defines a submodule of the λ-quotient Aλ for the left action of A by multipli-
cation, and the k-span of the elements {aλ

ij} with i constant defines a submodule
of Aλ for the right action of A by multiplication. These submodules form a direct
sum decomposition of Aλ both as a left A-module and as a right A-module, and
the summands in each case are all isomorphic. This will be discussed further in
section two.

Clearly, if α is an automorphism of a standardly based algebra A, then α(B) is
another defining base for A. Let Aop denote the opposite algebra of A. If A is
standardly based with defining base B = {aλ

ij}, then so is Aop with defining base
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Bop = {bλ
ji} where bλ

ji = aλ
ij . Likewise, if α is an anti-automorphism of A, then

α(B) is another defining base for Aop.
Two standard defining bases B and B′ are said to be equivalent if, for all a ∈ A

and all pairs (i, j) ∈ I(λ)×J(λ), the constants fi′,λ(a, i) and fλ,j′ (j, a) with respect
to B are equal to their counterparts with respect to B′.

From (1.2.2) we may introduce, for each λ ∈ Λ, a function fλ : J(λ)× I(λ) → k
defined as follows: For any aλ

ij , a
λ
i′j′ ∈ Bλ, there is a unique element fλ(j, i′) ∈ k

such that

aλ
ija

λ
i′j′ ≡ fλ(j, i′)aλ

ij′ mod (A>λ).(1.2.3)

Note that standardly based algebras are a generalized version of cellular algebras,
introduced by Graham and Lehrer [GL]. Thus, every cellular algebra is standardly
based. In this generalization, we require neither that A has an involutive anti-
automorphism, nor that I(λ) is equal to J(λ). The significance of this generalization
will be shown in section four, where we shall prove that split quasi-hereditary
algebras are standardly based algebras. However, if a particular involutive anti-
automorphism is in force, then one can easily see the following.

(1.2.4) Lemma. Let A be a standardly based algebra on Λ with defining base

B = {aλ
ij | λ ∈ Λ, (i, j) ∈ I(λ) × J(λ)}.

If there is an involutive anti-automorphism ι : A → A such that (aλ
ij)

ι = aλ
ji, then

A is a cellular algebra.

A further discussion on the relationship with cellular algebras will be given in
section six.

For standardly based algebras, we do know something about one-sided cells of
the defining base immediately from the definition. Compare (1.1.6).

(1.2.5) Lemma. Let (A,B) be a standardly based algebra on Λ. Then, for any
aλ

ij, aµ
i′j′ ∈ B, we have the following.

(a) If aλ
ij 6L aµ

i′j′ then λ > µ. Thus, aλ
ij ∼L aµ

i′j′ implies λ = µ and j = j′.
(b) If aλ

ij 6R aµ
i′j′ then λ > µ. Thus, aλ

ij ∼R aµ
i′j′ implies λ = µ and i = i′.

So, for any λ ∈ Λ and (i, j) ∈ I(λ)× J(λ), if we put

BI(λ),j = {aλ
i′j ∈ B | i′ ∈ I(λ)} and Bi,J(λ) = {aλ

ij′ ∈ B | j′ ∈ J(λ)},
then both BI(λ),j and Bi,J(λ) are disjoint unions of left and right cells, called left
and right quasi-cells respectively.

A standardly based algebra A is said to be crystallographic if aλ
ij 6X aλ

kl (X =
L, R) implies aλ

ij ∼X aλ
kl.

Clearly, for a standardly based algebra A satisfying fλ 6= 0 for all λ ∈ Λ and
the crystallographic condition, both BI(λ),j and Bi,J(λ) are single left and right
cells of B respectively, and therefore every Bλ is a single two-sided cell. Thus, the
decomposition into cells of a defining base for A can be easily described as follows.

Two-sided cell : Bλ (λ ∈ Λ),
Left cells : BI(λ),j (λ ∈ Λ, j ∈ J(λ)),
Right cells : Bi,J(λ) (λ ∈ Λ, i ∈ I(λ)).
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Recall that, as a k-module, Aλ has a basis Bλ. Let βλ(aλ
ij , a

λ
i′j′ ) = fλ(j′, i) and

extend it bilinearly to Aλ×Aλ. Then we obtain a bilinear function βλ on Aλ×Aλ

which is associative as shown below.

(1.2.6) Lemma. For any x, y ∈ Aλ and a ∈ A, we have

βλ(ax, y) = βλ(x, ya).

Proof. By bilinearity, it suffices to prove the case when x = aλ
ij0 , y = aλ

i0j . Using
(1.2.2), we have

βλ(aλ
ij0 , a

λ
i0ja) =

∑
j′

fλ,j′(j, a)βλ(aλ
ij0 , a

λ
i0j′ )

=
∑
j′

fλ,j′(j, a)fλ(j′, i).

and

βλ(aaλ
ij0 , a

λ
i0j) =

∑
i′

fi′,λ(a, i)βλ(aλ
i′j0 , a

λ
i0j)

=
∑
i′

fi′,λ(a, i)fλ(j, i′).

By the associativity, we have

βλ(aaλ
ij0 , a

λ
i0j)a

λ
i0j0 ≡ aλ

i0j(a · aλ
ij0)

≡ (aλ
i0ja)aλ

ij0 ≡ βλ(aλ
ij0 , a

λ
i0ja)aλ

i0j0 mod (A>λ),

forcing the coefficients to be equal.

(1.2.7) Remark. There is another bilinear form on Aλ defined by setting

γλ(aλ
ij , a

λ
i′j′ ) = fλ(j, i′).

In this case the associativity property should be replaced by

γλ(xa, y) = γλ(x, ay).

Clearly, we have βλ(x, y) = γλ(y, x), and hence im (βλ) = im (γλ) for all λ ∈ Λ. We
shall use βλ (not γλ) to define certain useful bilinear functions in 2.3 which in the
case of cellular algebras agree with the ones discussed in [GL, §2].

1.3 Standardly full-based algebras. For each λ ∈ Λ, one sees clearly that the
image im(βλ) is an ideal of k. This leads to the following definition.

(1.3.1) Definition. A standardly based algebra (A,B) on Λ is said to be stan-
dardly full-based if, for each λ ∈ Λ, im(βλ) = k.

The adjective full used here will be justified again in (2.4.2) by showing that the
set of simple modules of such an algebra A over a field is indexed by the full set
Λ. However, the fullness here of these images reflects also some structure of the
algebra.

For a prime ideal p of k, the localization kp of k at p is a local ring. Let k(p) be
its residue field. For any k-module M , let M(p) = M ⊗k k(p). If J is an ideal of A,
define J̄(p) to be the image of J(p) in A(p).

(1.3.2) Lemma. Keep the notation introduced above. Let A be a standardly based
algebra on Λ. Then A is standardly full-based if and only if, for each λ ∈ Λ, the
ideal Aλ of A/A>λ is idempotent.
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Proof. Let J = Aλ. The result is clearly true if k is a field, since

J2 = J ⇔ fλ(j, i) 6= 0 for some i ∈ I(λ), j ∈ J(λ) ⇔ im(βλ) = k.

In general, if im(βλ) = k for all λ, then the k(p)-algebra A(p) is standardly full-
based. Therefore, J̄(p)2 = J̄(p). So, by [CPS3, 3.3.1], we obtain (J/J2)p = 0 for
all prime ideals p. Therefore, J2 = J . Conversely, suppose J2 = J but im(βλ) 6= k.
Then 0 = J(m)2 6= J(m), for any maximal ideal m of k with im(βλ) ⊆ m ⊂ k, a
contradiction.

We shall see in section three that standardly full-based algebras are quasi-
hereditary. The following gives examples of standardly (full-)based algebras.

(1.3.3) Example. A Schur algebra and its Borel subalgebras are standardly based
algebras. For Schur algebras, the poset is the set Λ+(n, r) of partitions of r with
at most n parts, and a defining base is the codeterminant bases defined in [G3,
§6]. For each λ ∈ Λ+(n, r), I(λ) = J(λ) is the set of all semi-standard λ-tableaux.
We leave the details in this case to the reader (see the case of q-Schur algebras in
section five). We now look at the Borel subalgebras. For any positive integers n
and r, let

I = I(n, r) = {(i1, · · · , ir) | 1 6 ij 6 n},
and let the symmetric group Sr act on I(n, r) by place permutation. Thus the
centralizing algebra of the corresponding permutation module over k is called a
Schur algebra, denoted Sk(n, r). It has a natural basis ξO indexed by the Sr-orbits
O of I × I. Let Ω be a transversal of the set of all Sr-orbits of I × I and write, for
(i, j) ∈ I × I, ξij = ξO if (i, j) ∈ O.

Following J.A. Green, we order Ω by setting i 4 j if and only if i1 6 j1, . . . , ir 6
jr, and we let S4 (resp. S<) be the subalgebra spanned by ξij with (i, j) ∈ Ω4

(resp. (i, j) ∈ Ω<), where

Ω4 = {(i, j) ∈ Ω | i 4 j} (resp. Ω< = {(i, j) ∈ Ω | i < j}).
These are called Borel subalgebras. We also introduce the subalgebras S≺ (resp.
S�) with identity by using the subset Ω≺1 (resp. Ω�1 ) defined in an obvious way.
The subscript 1 here indicates that both sets include 1 which corresponds to the
identity element of S≺ or S�, respectively.

Let Λ(n, r) be the set of all compositions λ = (λ1, · · · , λn) of r with n parts.
Then Λ(n, r) can be identified with the Sr-orbits of I. We say that i ∈ I has weight
λ = wt(i) ∈ Λ(n, r) if i is in the corresponding orbit. Λ(n, r) has a partial order
defined by setting λ 6 µ if and only if

∑k
i=1 λi 6

∑k
i=1 µi for all k with 1 6 k 6 n.

Clearly, if i, j ∈ I have weights λ, µ respectively, then i 4 j ⇒ λ > µ.
Now we have the following.

(1.3.4) Proposition. The k-algebra S4 (resp. S<, S≺, S�) is a standardly based
algebra with defining base over Ω4 (resp. Ω<, Ω≺1 , Ω�1 ). Moreover, S4 and S< are
standardly full-based algebras.

Proof. For any (i, j) ∈ Ω4, if λ is the weight of i, we let aλ
i,j = ξi,j and put, for a

fixed (i, j) ∈ Ω4 with λ being the weight of i,

I(λ) = {i} and J(λ) = {j ∈ I | (i, j) ∈ Ω4}.
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Thus, for any (i, j) ∈ I(λ) × J(λ) and (i′, j′) ∈ I(µ)× J(µ), we have aµ
i′j′a

λ
ij = 0 if

wt(j′) 6= wt(i) = λ, and

aµ
i′j′a

λ
ij =

∑
(i′j′′)∈Ω4

cj′′a
µ
i′j′′

if wt(j′) = wt(i) = λ, by the product formula in [G2, 2.6-2.7]. Clearly, (1.2.2) holds.
This shows that S4 is a standardly based algebra on the poset Λ(n, r) with defining
base {ξij |(i, j) ∈ Ω4}. Moreover, βλ(aλ

ij , a
λ
ii) = 1 since aλ

iia
λ
ij = aλ

ij . Therefore, S4

is a standardly full-based algebra.
Let Λ(n, r)0 = Λ(n, r) ∪ {0} and extend the partial order of Λ(n, r) to Λ(n, r)0

by setting λ > 0. Let I(0) = J(0) = {0} and a0
00 = 1, and define I(λ), J(λ) and

aλ
ij similarly as above. Now, one sees easily that S≺ is a standardly based algebra

on the poset Λ(n, r)0 with defining base Ω≺1 . In this case, we have βλ = 0 for all
λ ∈ Λ(n, r) and β0 ≡ 1. Therefore, it is not full.

The proof for S< and S� is almost the same.

We shall see in section three that we have proved that S4 and S< are quasi-
hereditary over k. This fact when k is a field was established by Green (see [G2]).
The proof here is new.

2. Representations of standardly based algebras

In this section we assume that A is a standardly based algebra on Λ with defining
base B. We also assume that B is finite. Let Aop denote the opposite algebra of
A. We denote by A-mod (resp. mod-A) the category of all finitely generated left
(resp. right) A-modules. So we may identify mod-A with Aop-mod. Note that the
k-linear dual is a functor (−)∗ = Homk(−, k) : mod-A → A-mod. Throughout,
the term module means left module.

If Θ is a class of (left, right or bi) A-modules (closed under isomorphism), we
shall use F(Θ) to denote the class of all A-modules M which have a Θ-filtration,
that is, a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mm = M such that all sections Mt/Mt−1,
1 6 t 6 m, belong to Θ.

2.1 Standard and costandard modules. Recall, for any λ ∈ Λ, that both A>λ

and A>λ are ideals of A. So their quotient Aλ = A>λ/A>λ is a k-free (A, A)-
bimodule with basis Bλ (by abuse of notation). We may also view Aλ as a k-
submodule of A spanned by Bλ.

(2.1.1) Lemma. (a) For each λ ∈ Λ and (i, j) ∈ I(λ) × J(λ), let ∆(λ, j) (resp.
∆(i, λ)) be the left (resp. right) A-submodule of Aλ generated by (the image of)
BI(λ),j (resp. Bi,J(λ)). Then ∆(λ, j) (resp. ∆(i, λ)) is k-free with basis (the image
of) BI(λ),j (resp. Bi,J(λ)).

(b) ∆(λ, j) (resp. ∆(i, λ)) is isomorphic to ∆(λ, j′) (resp. ∆(i′, λ)) for any
(i′, j′) ∈ I(λ)× J(λ).

Proof. By symmetry, it suffices to consider the case of left A-modules.
(a) By (1.2.2), one sees easily that ∆(λ, j) is generated as a k-module by BI(λ),j.

The freeness is obvious.
(b) By (a) we first have a k-module isomorphism f : ∆(λ, j) → ∆(λ, j′) sending

aλ
xj to aλ

x,j′ for any x ∈ I(λ). By (1.2.2) again, we see that f is A-linear since
fi′,λ(a, i) is independent of j.
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(2.1.2) Definition. For λ ∈ Λ, we define ∆(λ) (resp. ∆op(λ)) to be the left (resp.
right) A-module with k-basis {aλ

i | i ∈ I(λ)} (resp. {bλ
j | j ∈ J(λ)}) and module

action defined by

aaλ
i =

∑
i′∈I(λ)

fi′,λ(a, i)aλ
i′

(2.1.3)

(resp. bλ
j a =

∑
j′∈J(λ)

fλ,j′(j, a)bλ
j′).

Let ∇(λ) = ∆op(λ)∗. We shall call the modules ∆(λ) and ∇(λ) the standard
and costandard modules of A (or of the category A-mod), respectively.

Clearly, we have

∆(λ) ∼= ∆(λ, j0) via aλ
i 7→ aλ

ij0 ,

∆op(λ) ∼= ∆(i0, λ) via bλ
j 7→ aλ

i0j ,
(2.1.4)

for all i0 ∈ I(λ) and j0 ∈ J(λ).

(2.1.5) Lemma. For any λ ∈ Λ, the tensor product ∆(λ)⊗k ∆op(λ) is an (A, A)-
bimodule in a natural way and is isomorphic to Aλ as bimodule. In particular, as
left A-module, Aλ is isomorphic to the direct sum, ∆(λ)⊕rλ , of rλ = |J(λ)| copies
of ∆(λ).

Proof. Since ∆(λ) ⊗k ∆op(λ) is k-free with basis aλ
i ⊗ bλ

j , (i, j) ∈ I(λ) × J(λ), we
have a k-linear isomorphism

m : ∆(λ) ⊗k ∆op(λ) → Aλ; aλ
i ⊗ bλ

j → aλ
ij .(2.1.6)

Now (1.2.2) and (2.1.3) show that this is actually a bimodule isomorphism.

Note that the map m is not the map induced by the multiplication map from
∆(λ, j0) ⊗k ∆(i0, λ) to Aλ. However, if there exist i0, j0 such that fλ(j0, i0) is a
unit in k, then m can be defined by the multiplication map

mult : ∆(λ, j0)⊗k ∆(i0, λ) → Aλ.(2.1.7)

2.2 Cell modules. We also define modules associated to cells of B. Let θX be a
cell of B, where X ∈ {L, R, LR} indicates a left, right or two-sided cell. Let a ∈ θX

and define

M(6X a) =
∑
b∈B

b6Xa

kb and M(<X a) =
∑
b∈B

b6Xa,b6∼Xa

kb.

Both M(6X a) and M(<X a) are left, right or two-sided ideals depending on
X . We now put kθX = M(6X a)/M(<X a) and call it an X-cell module. Let ΘX

be the set of all X-cell modules.

(2.2.1) Lemma. (a) Every standard A-module ∆(λ) has a ΘL-filtration.
(b) Every standard right A-module ∆op(λ) has a ΘR-filtration.
(c) Every Aλ has a ΘLR-filtration.
Moreover if A is crystallographic and fλ 6= 0 for all λ ∈ Λ, then all ∆(λ), ∆op(λ)

and Aλ are cell modules.
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Proof. We only prove (a). One may prove (b) and (c) similarly. The last assertion
follows from the definition.

By (1.2.4), BI(λ),j is a disjoint union of left cells. Write BI(λ),j =
.⋃

iΓi where Γi,
1 6 i 6 t, are left cells of B in BI(λ),j . Note that the linear order Γ1, Γ2, · · · here is
compatible with the induced order 6L. For any i ∈ [1, t] let Mi be the k-submodule
of BI(λ),j generated by the set

⋃i
j=1 Γj . Then Mi is a left A-submodule of ∆(λ, j).

It is easy to see that 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = ∆(λ, j) is a filtration of ∆(λ, j)
whose section is isomorphic to a left cell module defined in 2.2. The result follows
from (2.1.4).

2.3 The bilinear function βλ. Recall from (1.2.3) the function fλ : J(λ)×I(λ) →
k. We define (compare [GL, 2.3]) a bilinear pairing βλ : ∆(λ) ×∆op(λ) → k such
that

βλ(aλ
i , bλ

j ) = fλ(j, i).

The notation βλ should not be confused with the bilinear form βλ on Aλ. However,
we may view βλ here as the restriction of the βλ on Aλ by identifying ∆(λ) and
∆op(λ) with ∆(λ, j0) and ∆(i0, λ) under (2.1.4).

Some of the results related to the function βλ below are parallel to those in [GL,
§2] related to the similar function φλ there.

(2.3.1) Lemma. (a) For any x ∈ ∆(λ), y ∈ ∆op(λ) and a ∈ A, we have

βλ(ax, y) = βλ(x, ya).

(b) If x, z ∈ ∆(λ) and y ∈ ∆op(λ) then m(x⊗ y)z = βλ(z, y)x, where

m : ∆(λ) ⊗k ∆op(λ) → Aλ

is the k-module isomorphism given in (2.1.6).

Proof. The statement (a) follows from (2.1.3), (1.2.6) and the previous remark. To
prove (b), note that the maps m and βλ are bilinear and we may assume that x, y, z
are standard basis elements in ∆(λ) and ∆op(λ). Then the verification of (b) is
straightforward.

(2.3.2) Corollary. For any z ∈ ∆(λ), let Iz be the ideal of k defined by

Iz = {βλ(z, y)|y ∈ ∆op(λ)}.
Then ∆(λ) is A-cyclic if Iz = k.

Proof. By (2.3.1)(b) we have

∆(λ) ⊇ Az ⊇ Aλz = {βλ(z, y)x | y ∈ ∆op(λ), x ∈ ∆(λ)} = Iz∆(λ).

So Iz = k implies ∆(λ) = Iz∆(λ), forcing ∆(λ) = Az.

(2.3.3) Corollary. Let Iz = k for some z ∈ ∆(λ). Then
(a) HomA(∆(λ), ∆(µ)) = 0 unless λ 6 µ,
(b) HomA(∆(λ), ∆(λ)) = k.

Proof. Since Iz = k, there exists an element y ∈ ∆op(λ) such that βλ(z, y) = 1, and
hence ∆(λ) = Aλz by the proof of (2.3.2). Thus HomA(∆(λ), ∆(µ)) 6= 0 implies
that there exist x ∈ ∆(λ), a ∈ Aλ and f ∈ HomA(∆(λ), ∆(µ)) such that af(x) 6= 0.
Therefore, by (1.2.2), λ 6 µ.
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Let λ = µ. For any f ∈ EndA(∆(λ)), f is determined by z′ = f(z), since
∆(λ) = Aλz. By (2.3.1)(b) we have

f(z) = f(βλ(z, y)z) = f(m(z ⊗ y)z) = m(z ⊗ y)z′ = βλ(z′, y)z.

Thus f 7→ βλ(z′, y) gives the isomorphism between EndA(∆(λ)) and k.

(2.3.4) Corollary. Let k be a field. Then ∆(λ) is A-cyclic if βλ 6= 0.

2.4 Simple modules and projective covers. In this section we assume that k
is a field. Thus a k-algebra A is finite dimensional over k and an A-module is also
finite dimensional as a k-space. Recall that, for a given A-module M , the head
hd(M) of M is the largest semisimple quotient module of M and the radical of M
is the submodule rad(M) of M such that M/rad(M) = hd(M). If L is a simple
A-module, let [M : L] be the multiplicity of L in M as a composition factor.

Let A be a finite dimensional standardly based algebra over k. We first determine
all non-isomorphic simple modules of A.

(2.4.1) Theorem. Let A be a finite dimensional standardly based algebra on Λ
over a field k and let Λ1 = {λ ∈ Λ | βλ 6= 0}.

(a) For any λ ∈ Λ1 we have

rad(∆(λ)) = {v ∈ ∆(λ) | βλ(v, y) = 0, for all y ∈ ∆op(λ)},
and L(λ) := ∆(λ)/rad(∆(λ)) is simple.

(b) Let λ ∈ Λ1. If L(λ) is a composition factor of ∆(µ), then λ 6 µ and,
moreover, [∆(λ) : L(λ)] = 1.

(c) For any λ ∈ Λ1, L(λ) is absolutely irreducible.
(d) {L(λ) | λ ∈ Λ1} is a complete set of all non-isomorphic simple A-modules.
(e) If A is semisimple, then L(λ) = ∆(λ) for all λ ∈ Λ. Therefore, A is split

semisimple.

Proof. Let R = {v ∈ ∆(λ)|βλ(v, y) = 0, for all y ∈ ∆op(λ)}. If λ ∈ Λ1 then
R 6= ∆(λ). Thus, for 0 6= z ∈ ∆(λ)/R, write z = z1 + R. Since z1 6∈ R, there
exists an element y ∈ ∆op(λ) such that βλ(z1, y) = 1. So, for any x ∈ ∆(λ),
x = βλ(z1, y)x = m(x ⊗ y)z1 ∈ Az1. This shows that ∆(λ) = Az1 and ∆(λ)/R =
Az, which implies that ∆(λ)/R is a simple left A-module. Thus R ⊇ rad(∆(λ)).
If rad(∆(λ)) 6= R, then there is a simple module L in hd(∆(λ)) such that the
projection η from ∆(λ) onto L does not map R to zero. Therefore η(R) = L. Thus,
we have η(z1) = η(u) for some u ∈ R, but β(u, y) = 0 as u ∈ R. By (2.3.1(b)), we
have

η(z1) = η(βλ(z1, y)z1) = m(z1 ⊗ y)η(z1) = η(m(z1 ⊗ y)u) = η(β(u, y)z1) = 0.

So η(∆(λ)) = 0, a contradiction. Therefore rad ∆(λ) = R, and (a) is proved.
We now prove (b). If L(λ) is a composition factor of ∆(µ), then there is an

A-homomorphism η : ∆(λ) → ∆(µ)/N for some A-submodule N ⊂ ∆(µ) such that
imη ∼= L(λ). Since ∆(λ) = Aλz1 for some z1 ∈ ∆(λ) as above and η 6= 0, we have
immediately by (1.2.2) that µ > λ. If µ = λ then η must be a surjection, since
η(z) = z′ + N = βλ(z1, y)z′ + N = βλ(z′, y)z + N . Thus ∆(λ)/N ∼= L(λ), and
hence [∆(λ) : L(λ)] = 1.

By (b) we have EndA(L(λ)) ∼= EndA(∆(λ)) ∼= k. Therefore, L(λ) is absolutely
irreducible.
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To prove (d), we first note that L(λ) ∼= L(µ) implies λ = µ. For any simple
A-module L, we have an epimorphism f : A → L. Let

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm = A

be a based filtration given in (1.1.3) with m = |Λ|. Let Ji be the minimal ideal in the
above filtration such that f |Ji 6= 0, and put λ = λi. Then f induces an epimorphism
f : Aλ ∼= Ji/Ji−1 → L and hence, by (2.1.5), an epimorphism f : ∆(λ) → L forcing
L(λ) ∼= L by (b).

Finally, if A is semisimple then any left A-module is completely reducible. Thus,
rad(∆(λ)) = 0, and hence, L(λ) = ∆(λ) for any λ ∈ Λ. Now EndA(L(λ)) = k
implies that A is split semisimple.

(2.4.2) Corollary. Let A be a standardly full-based algebra on Λ over a field k.
Then Λ1 = Λ, and {L(λ) | λ ∈ Λ} is a complete set of all non-isomorphic simple
A-modules.

Proof. The assertion follows from Theorem (2.4.1)(d) and the definition of a stan-
dardly full-based algebra.

Note that if Λ1 happens to be an ideal, then A/A(Λ\Λ1) is a standardly full-
based algebra on the poset Λ1.

(2.4.3) Lemma. Let A be a standardly based algebra on Λ and let AP be a pro-
jective indecomposable submodule of A. If λ ∈ Λ is a minimal element such that
AλP 6= 0, then λ ∈ Λ1 and P is the projective cover of L(λ). Moreover, we have
P = A>λP .

Proof. Let Γ be the coideal of Λ generated by {µ ∈ Λ|AµP 6= 0}. Then the ideal
A(Γ) of A defined in 1.1 has the property that A(Γ) ⊗A P ∼= A(Γ)P = P , and so
AλP is a homomorphic image of P . Now

HomA(P, ∆(λ)) ⊇ HomA(Aλ ⊗A P, ∆(λ))
∼= Homk(∆op(λ) ⊗A P, EndA(∆(λ)) by (2.1.4)
∼= Homk(∆op(λ) ⊗A P, k) by (2.3.3)
6= 0.

So, if hd(P ) = L(ν) for some ν ∈ Λ1, then L(ν) is a composition factor of ∆(λ).
By (2.4.1)(b) we have ν 6 λ. However, since ∆(ν) is a homomorphic image of P
and ∆(ν) = Aν∆(ν) (see (2.3.2)), it follows that AνP 6= 0. Therefore ν > λ, and
hence ν = λ. Now λ is the unique minimal element of Γ, and the last assertion
follows.

We shall denote the projective cover of L(λ) by P (λ), and let

∆ = {M ∈ Ob(A-mod) | M ∼= ∆(λ) for some λ ∈ Λ}.
(2.4.4) Proposition. Let A be a standardly based algebra. For λ ∈ Λ1, the projec-
tive cover P (λ) has a ∆-filtration. If [P (λ) : ∆(µ)] denotes the number of sections
isomorphic to ∆(µ) in such a filtration, then [P (λ) : ∆(µ)] 6= 0 ⇒ µ > λ and
[P (λ) : ∆(λ)] = 1.

Proof. We have by (2.4.3) P (λ) = A>λP (λ) ∼= A>λ ⊗A P (λ). We order Λ>λ =
{λ1, · · · , λt = λ} in the same manner as in (1.1.2). Thus, we have a filtration of
A>λ as in (1.1.3) with t = m. Tensoring this filtration with P (λ) gives a filtration of
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P (λ) by the projectivity of P (λ). Now the sections of this filtration are of the form
Aλi ⊗A P (λ) (1 6 i 6 t), which is isomorphic to a direct sum of ∆(λi) by (2.1.5),
and Aλ ⊗A P (λ) ∼= ∆(λ) by the proof of (2.4.3). The result follows easily.

(2.4.5) Definition. Let A be a standardly based algebra on a poset Λ over a
discrete valuation ring O with quotient field K and residue field k, and assume
that AK is semisimple. For any λ, µ ∈ Λ, let dλ,µ be the multiplicity of L(µ) in
∆(λ). Then D = (dλ,µ) λ∈Λ

µ∈Λ1

is said to be the decomposition matrix of A.

By Theorem (2.4.1), we have the following proposition.

(2.4.6) Proposition. Keep the notation introduced in (2.4.5). Let A be a stan-
dardly based algebra over O. Then the decomposition matrix of A is upper unitri-
angular.

3. Quasi-heredity of standardly full-based algebras

In this and the next section, we shall prove the main results of the paper. We first
prove that standardly full-based algebras are in fact split quasi-hereditary algebras.
Then we shall prove in the next section that every split quasi-hereditary algebra is
a standardly full-based algebra. Throughout, k denotes a commutative noetherian
ring unless otherwise specified.

3.1 Quasi-hereditary algebras. Quasi-hereditary algebras are a class of finite
dimensional algebras which were first introduced by E. Cline, B. Parshall and L.
Scott in order to deal with highest weight categories arising from the representations
of Lie algebras and algebraic groups. However, the importance of quasi-hereditary
algebras lies also in ring theory itself. Many interesting algebras such as Auslander
algebras and Schur algebras turn out to be quasi-hereditary. The definition below,
taken from [CPS3], is about integral quasi-hereditary algebras, i.e., quasi-hereditary
algebras over a commutative noetherian ring k. Following [CPS3], we shall only
consider k-algebras A which are finitely generated as k-modules, i.e., k-finite al-
gebras. Recall from [CPS3] that A is k-semisimple if, for any A-module M , the
natural projection A⊗k M → M is A-split.

(3.1.1) Definition. An ideal J in a k-projective algebra A is said to be a heredity
ideal if A/J is k-projective and the following conditions hold.

(a) J is projective as a left A-module.
(b) J2 = J .
(c) The k-algebra E = EndA(AJ) is k-semisimple.
A k-projective algebra A is called to be a quasi-hereditary algebra if there is a

sequence

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jt = A

of ideals in A such that Ji/Ji−1 is a heredity ideal in A/Ji−1 for i = 1, 2, . . . , t. We
shall call such a sequence a heredity chain.

Note that if k is a field, then (c) is equivalent to
(c′) J · rad(A) · J = 0 (see [CPS3]).
Thus (3.1.1) agrees with the definition for quasi-hereditary algebras over fields

in [CPS1]. Also, we adopt definitions for the quasi-hereditary algebras of separable
and split types over a commutative noetherian ring given in [CPS3].
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An alternative way to describe quasi-hereditary algebras A over fields is the no-
tion of highest weight categories defined in [CPS1], where it is proved that A is
a quasi-hereditary algebra if and only if A-mod is a highest weight category. A
highest weight category C is a certain abelian category defined on a weight poset Λ
satisfying (a) The non-isomorphic simple object in C are indexed as L(λ), λ ∈ Λ;
(b) For any λ ∈ Λ, there is a standard object ∆(λ) whose composition factors are
of form L(µ) with µ 6 λ, and moreover, L(λ) occurs with multiplicity one; (c) The
projective cover P (λ) of L(λ) has a ∆-filtration and ∆(λ) occurs with multiplicity
one. This definition has been generalized by taking up k to a commutative local
noetherian ring in [DS, 2.1], where the notion of k-finite highest weight category is
introduced. Thus, if we denote by m the maximal ideal of k, by k̄ the residue field
and by M̄ the reduction modulo m of any k-module M , then, in a k-finite high-
est weight category C, the standard k-free objects ∆(λ) exist and their reductions
modulo m are the standard objects of the full subcategory C̄ of objects M̄ with M
in C, which is a highest weight category over the field k̄. We have the following (see
[DS, 2.1.1, 2.3, 2.5]).

(3.1.2) Theorem. Let k be a commutative local noetherian ring. A k-finite algebra
is quasi-hereditary of separable type if and only if the category C = A-mod of k-
finite A-modules is a k-finite highest weight category with a finite weight poset Λ
and all EndC(L(λ)) being k̄-separable. Moreover, the projective cover P (λ) of L(λ),
filtered by standard modules, exists.

(3.1.3) Proposition. Keep the notation in (3.1.2). There is a one to one corre-
spondence between the set of compatible linear orders for Λ as defined in (1.1.2)
and the set of longest heredity chains of A.

Proof. Let P (λ) be the projective cover of L(λ) (see [DS, 2.4]) and lλ = dimk̄L(λ).
If P =

⊕
λ∈Λ P (λ)

⊕
lλ , then we may identify A with the algebra EndA(P )op.

Let Λ = {λ1, λ2, · · · , λm} be a compatible linear order and Pi =
⊕

j≤i P (λj).
Then, one sees easily that HomA(P, Pi) = Aei, where ei = idPi is viewed as an
element of A. Let

Ji = HomA(P, Pi)HomA(Pi, P ) = AeiA.

Then, by the proof of [DS, 2.5], the sequence

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = A

is a heredity chain of A. To show the uniqueness, it suffices by induction to show
that if J is any heredity ideal of A with J ∼= P (λ1)⊕r, then J = J1. This can be
shown as follows. Write J = P1⊕· · ·⊕Pr, where Pi

∼= Ae1. So, if fi : Ae1 → Pi is the
isomorphism, then Pi = fi(Ae1) = Ae1fi(e1) ⊆ Ae1A. Therefore, J ⊆ Ae1A = J1.
Conversely, from the projectivity of J , there is an idempotent e′ ∈ A such that
P1 = Ae′, and so Ae′A ⊆ J . Reversing the roles of J and J1 in the previous proof,
we obtain J1 ⊆ Ae′A. Therefore, J = J1.

From the proof above, we conclude the following.

(3.1.4) Corollary. If J is a heredity ideal for which the head of J̄ is isomorphic
to a direct sum of a single L(λ) with λ ∈ Λ maximal, then

J =
∑

M6A,M∼=P (λ)

M.
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3.2. Quasi-heredity of standardly full-based algebras. Let Spec(k) be the
set of all prime ideals of k. For p ∈ Spec(k), recall the notation introduced before
(1.3.2): k(p) = kp/pp, M(p) = M ⊗k k(p) and J̄(p), where M is a k-module and J
is an ideal of A. Note that J̄(p) denotes the image of J(p) in A(p).

(3.2.1) Theorem. Let k be a commutative noetherian ring and let A be a stan-
dardly full-based algebra over k. Then A is quasi-hereditary over k. If, in addition,
k is local, then A is split quasi-hereditary.

Proof. Let

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm = A

be a based filtration of A as given in (1.1.3). Thus, J := J1 is generated by Bλ,
where λ = λ1 in the notation of (1.1.3). It is easy to see that A/J is a standardly
based algebra on the poset Λ\{λ} with the image of B\Bλ as defining basis. Thus,
to show that (1.1.3) is a heredity chain of A and A is split, it suffices to show that
J is a heredity ideal of A of split type. However, to show that J is a heredity ideal
is also equivalent to proving that J̄(p) is a heredity ideal of A(p) for all p ∈ Spec(k)
(see [CPS3, 3.3]).

For p ∈ Spec(k), one sees easily that A(p) is a standardly based k(p)-algebra,
since A is k-free and

0 = J̄0(p) ⊂ J̄1(p) ⊂ · · · ⊂ J̄m(p) = A(p)(b)

is a based filtration of A(p). By (2.1.4), we have J̄(p) ∼= ∆(λ)⊕rλ . Here, for
simplicity of notation, ∆(λ) denotes the standard module of A(p). Since βλ(p) 6= 0,
EndA(p)(J(p)) is isomorphic to the ring of full rλ × rλ matrices over the field k(p)
by (2.3.3). Hence, it is a semisimple k(p)-algebra.

As shown above, J̄(p) is an ideal of A(p) and J̄(p) ∼= ∆(λ)⊕rλ . Using βλ(p) 6= 0
again, we see that ∆(λ) has a simple head L(λ). Let P (λ) be the projective cover
of L(λ). Then, by (2.4.4) and the maximality of λ, we have P (λ) = ∆(λ), and
hence J̄(p) is projective as left A(p)-module.

Finally, by (1.3.2), we have J2 = J . Thus J̄(p)2 = J̄(p) for all p ∈ Spec k. So we
have proved that J̄(p) is a heredity ideal of A(p) for all p ∈ Spec k. By the remark
at the beginning of the proof, A(p) is quasi-hereditary, and hence so is A.

Assume now k is local. Then there must be x, y ∈ Bλ such that βλ(x, y) is
invertible in k, since im(βλ) = k is generated by the image of fλ. This implies that
(2.3.3(b)) holds. Consequently, the algebra EndA(J) is isomorphic to a full matrix
algebra over k and, therefore, split.

(3.2.2) Corollary. Let A be a standardly full-based algebra over a commutative
local noetherian ring k.

(a) Every based filtration defined in (1.1.3) of A is a heredity chain of A. There-
fore, based filtrations exhaust all the longest heredity chains of A by (3.1.3).

(b) The standard and costandard modules defined in (2.1.2) agree with their
counterparts in the k-finite highest weight category A-mod.

(c) If B′ is another standard defining base of A defined with respect to another
partial order 6′ on Λ, then A must be full with respect to B′.
Proof. To see (c), we note that the reduction Ā modulo m is standardly based with
respect to (Λ, 6′) and B̄′. Thus, if Λ1 is defined with respect to B̄′ as in (2.4.1),
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then we must have Λ1 = Λ as Λ indexes the simple Ā-modules, forcing im(βλ) = k
for all λ ∈ Λ. Therefore, A is standardly full-based with respect to B′.
(3.2.3) Remark. (a) Result (3.2.2) gives the following property of a standard
defining base: If A is standardly full-based algebra (hence quasi-hereditary) with
defining base B, fibred over a poset Λ, and

0 = I0 ⊂ I1 ⊂ · · · ⊂ It = A

is a heredity chain of A, then every ideal Ij has a basis of the form

BΓ =
⋃
λ∈Γ

Bλ for some coideal Γ ⊆ Λ.

We shall call this property the global property of the defining base B.
(b) Let A be a standardly full-based algebra over a field k. Then, by using the

equivalence between quasi-hereditary algebras and highest weight categories (cf.
[CPS1]), the result (3.2.2) is equivalent to the fact that the category A-mod is
a highest weight category with weight poset Λ. Thus we can get another proof
of (3.2.2). In this approach, the standard module ∆(λ) and costandard module
∇(λ) defined in (2.1.2) are the standard module and costandard module in the
highest weight category A-mod. Result (2.4.1) gives the required condition on the
composition factors of ∆(λ), and the condition on the ∆-filtration for P (λ) is given
in (2.4.4).

(c) When A is cellular and full over a field, the quasi-heredity of A has been
mentioned without proof in [GL, 3.10].

(3.2.4) Example. By Theorem (3.2.1), the Borel subalgebras S4 and S< de-
scribed in (1.3.4) are integrally quasi-hereditary.

4. Standard bases for split quasi-hereditary algebras

We are going to prove the converse of Theorem (3.2.1). Throughout this section,
k denotes a commutative local noetherian ring.

4.1. Shuffling heredity chains. Let A be a quasi-hereditary algebra over k with
weight poset Λ. Let λ ∈ Λ be a fixed maximal element. By (3.1.4) there is a heredity
ideal J associated to λ. Thus the quotient algebra B = A/J is quasi-hereditary
over k with weight poset Λ\{λ}. Let π : A → B be the natural projection.

A longest heredity chain, say

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm = A,(4.1.1)

determines a compatible linear order of Λ: λ1, λ2, · · · . When λ1 6= λ we want to
shuffle (4.1.1) to obtain a heredity chain

0 = I0 ⊂ I1 ⊂ · · · ⊂ Im = A(4.1.2)

such that I1 = J and the images of (4.1.1) and (4.1.2) in B are the same.
Let ∆(ν) (resp. ∆op(ν)) be the standard module corresponding to ν ∈ Λ in the

category of k-finite left (resp. right) A-modules.
The following lemma is necessary when shuffling a heredity chain (see [DS, 2.2]).

(4.1.3) Lemma. Let k be a commutative local noetherian ring. Let A be a quasi-
hereditary k-algebra of separable type with the poset Λ. Then

Ext1A(∆(λ), ∆(µ)) = 0

unless λ < µ.
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(4.1.4) Proposition. Let k be a commutative local noetherian ring. Let A be
a separable quasi-hereditary k-algebra. Suppose λ ∈ Λ is maximal and J is the
associated heredity ideal. Let B = A/J , and let π be the natural homomorphism
A → B. If (4.1.1) is a heredity chain of A of maximal length and l is the smallest
number such that J ⊆ Jl, then

(a) Jl = Jl−1 + J = Jl−1 ⊕ J,
(b) the sequence

0 = π(J0) ⊆ π(J1) ⊆ · · · ⊆ π(Jl−1) ⊆ π(Jl+1) ⊆ · · · ⊂ π(Jm) = B

is a heredity chain of B, and
(c) the sequence

0 ⊂ J ⊂ J1 ⊕ J ⊂ · · · ⊂ Jl−1 ⊕ J ⊂ Jl+1 ⊂ · · · ⊂ Jm = A

is a heredity chain of A.

Proof. Let (1.1.2) be the compatible linear order corresponding to the given hered-
ity chain (4.1.1) and let λ = λi0 . Since λ is maximal and every Ji has a ∆-
filtration, by (4.1.3) and a short-long exact sequence argument we have Ji0 =
Ji0−1 ⊕ Ji0/Ji0−1. Thus, Ji0/Ji0−1 is a heredity ideal of A for which the head of
J̄i0/J̄i0−1 is a direct sum of L(λ). Therefore, (3.1.4) implies J = Ji0/Ji0−1 and
hence l = i0. So the statement (a) is proved.

By (a), we see that

π(Ji) ∼=
{

Ji, for all i < l,

Ji/J for all i > l,

and π(Jl−1) = π(Jl). It is straightforward to verify that the given sequence in (b)
is a heredity chain of B (cf. [DS, 2.8]).

Finally, (c) follows immediately from (b).

So the sequence given in part (c) is the required sequence (4.1.2).

4.2 Split quasi-hereditary algebras. We need also several facts about split
quasi-hereditary algebras. We first note the following.

(4.2.1) Lemma. Let k be a commutative local noetherian ring. Let A be a quasi-
hereditary algebra with weight poset (Λ, 6). If B is a standard defining base of A
on (Λ, 6′), where 6′ is possibly different from 6, then A is standardly full-based
and split.

Proof. This follows immediately from a similar argument for (3.2.2)(c).

(4.2.2) Proposition. Let k be a commutative local noetherian ring. Let A be a
split quasi-hereditary algebra with weight poset Λ.

(a) For any λ ∈ Λ, let ∆(λ) be the standard module in the category A-mod.
Then EndA(∆(λ)) ∼= k.

(b) If λ ∈ Λ is maximal then J ∼= ∆(λ) ⊗k ∆op(λ) as bimodule, where J is the
heredity ideal corresponding to λ.

Proof. (a) This follows from the discussion at the end of [CPS3]. For completeness,
we include a proof.
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Let 0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm be a heredity chain of A of maximal length. Thus
each Ei = EndA/Ji−1(Ji/Ji−1) is split over k (and hence is a direct sum of full
matrix rings over k, since k is local [CPS3, 2.4]). Thus every standard module
∆(λ) is of the form Ji/Ji−1 ⊗Ei P for some indecomposable direct summand P of
Ei. So we have

EndA(∆(λ)) ∼= HomEi(P, HomA(Ji/Ji−1, Ji/Ji−1 ⊗Ei P ))
∼= HomEi(P, HomA(Ji/Ji−1, Ji/Ji−1)⊗Ei P )
∼= HomEi(P, P ) ∼= k.

(b) Since J = AeA and J is projective, the multiplication map

m : Ae⊗eAe eA → AeA

is bijective by [DR1, Statement 7]. Since Ae ∼= P (λ) = ∆(λ) and

eAe ∼= EndA(Ae)op ∼= k,

we have J ∼= ∆(λ) ⊗k ∆op(λ), where ∆op(λ) ∼= eA.

We are now ready to prove the following.

(4.2.3) Theorem. Let k be a commutative local noetherian ring and let A be a
split quasi-hereditary algebra over k with weight poset Λ. Then A is a standardly
full-based algebra.

Proof. We apply induction on |Λ|. If Λ = {λ} then we have, by (4.2.2), a bimodule
isomorphism A ∼= ∆(λ) ⊗k ∆op(λ). If {aλ

i } and {bλ
j } are fixed bases for ∆(λ) and

∆op(λ) respectively, and aλ
ij is the image of aλ

i ⊗ bλ
j in A, then one sees easily that

{aλ
ij} is a standard defining base.
Assume |Λ| > 1 and let λ ∈ Λ be a maximal element. Let λ = λ1, λ2, . . . , λn be a

compatible linear order for Λ such that {λ2, λ3, . . . , λt} = Λ′ = {µ ∈ ΛB | µ 6< λ},
where ΛB = Λ\{λ}. Then, by (3.1.3), there is a heredity chain of A associated to
this order for Λ,

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jm = A.

Thus, by (4.2.2), J = J1
∼= ∆(λ) ⊗k ∆op(λ). Let B = A/J , and π : A → B

the natural epimorphism. Then B is a quasi-hereditary algebra with weight poset
ΛB. By induction, B is standardly (full-)based with defining base {bµ

ij}. So it has
the global property as described in (3.2.3)(a). In particular, {bµ

ij | µ ∈ Λ′, (i, j) ∈
I(µ) × J(µ)} is a basis for Jt/J . By (4.1.4), we have Jt

∼= Jt/J ⊕ J . So Jt/J can
be viewed as an ideal of A. Thus, for any µ ∈ Λ, we define

aµ
ij =


bµ
ij , if µ ∈ Λ′,

cµ
ij , if µ ∈ ΛB\Λ′,

aλ
ij , if µ = λ,

(4.2.4)

where cµ
ij is an inverse image of bµ

ij and aλ
ij is defined via the isomorphism J ∼=

∆(λ)⊗k ∆op(λ) as above.
We claim that A is a standardly based algebra with {aλ

ij} as a defining base,
and therefore A must be full by (4.2.1). Indeed, it is easy to see that (1.2.2) holds
if µ = λ. If µ 6= λ, then either µ ∈ Λ′ or µ ∈ ΛB\Λ′. In the first case, (1.2.2)
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follows by induction and the fact Jt
∼= Jt/J ⊕ J by (4.1.4). In the second case,

where µ ∈ ΛB\Λ′, we have for a ∈ A

π(a) · bµ
ij ≡

∑
i′

fi′,µ(i, π(a))bµ
i′j mod(B>µ), and similarly for bµ

ij · π(a)

by the induction hypothesis on the basis {bµ
i,j} of B. Thus we have

a · cµ
ij ≡

∑
i′

fi′,µ(i, π(a))cµ
i′j mod(A>µ), and similarly for cµ

ij · a,

since J ⊂ A>µ is an ideal by assumption. Hence we have proved that the basis
defined inductively in (4.2.4) is a standard defining base of A.

It is possible by taking inverse images of certain idempotents as basis elements
to construct a standard defining base in the proof above satisfying

aλ
ija

λ
ij ≡ aλ

ij mod (A>λ), for some i, j.

Thus, the fullness follows automatically.
We remark that the construction in the proof depends on the selection of the

bases for the standard modules ∆(λ) and ∆op(λ). However, if we fix, for each
λ ∈ Λ, bases {aλ

i | i ∈ I(λ)} and {bλ
j | j ∈ J(λ)} for ∆(λ) and ∆op(λ), respectively,

then any two defining bases for A defined inductively by (4.2.4) are equivalent.

(4.2.5) Definition. We shall call the union⋃
λ∈Λ

{aλ
i , bλ

j | i ∈ I(λ), j ∈ J(λ)}

a local basis for standard modules, and we shall call a standard defining base of a
quasi-hereditary algebra A a (global) standard basis of A.

From the previous remark, one has clearly the following.

(4.2.6) Corollary. Let A be a split quasi-hereditary algebra over a commutative
local noetherian ring. Then there is a surjective map from the set of local bases for
standard modules to the set of equivalence classes of standard bases for A.

Proof. The surjectivity follows from (2.1.4).

So we may introduce an equivalence relation on the set of local bases for standard
modules so that the equivalence classes correspond bijectively to the equivalence
classes of standard bases of A.

We also remark that corollary (4.2.6) can be viewed as a generalization of the
relationship between the global canonical bases for the modified quantized envelop-
ing algebras and the local canonical bases for the irreducible representations (see
[Lu, Part 4]).

Combining (4.2.3) with (3.2.1), we obtain the main result of the paper.

(4.2.7) Theorem. Let k be a commutative local noetherian ring. Then A is a split
quasi-hereditary algebra over k if and only if A is a standardly full-based algebra.
In particular, if k is an algebraically closed field, then a finite dimensional k-algebra
is quasi-hereditary if and only if it is standardly full-based.
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4.3 An application. We assume that k is a field in this subsection. Let A be
a finite dimensional algebra over k. Recall that A is said to be split over k if
EndA(L) ∼= k for every simple A-module L. We shall prove that a non-semisimple
split symmetric algebra A over k is not quasi-hereditary. This result is known by
a consideration of the global dimension of A. The proof below is just a simple
application of our theory about a standard basis of A.

Recall that a finite dimensional algebra A over k is said to be symmetric if A
admits a non-degenerate bilinear form φ : A×A → k which is associative:

φ(ab, c) = φ(a, bc), a, b, c ∈ A,

and symmetric:

φ(a, b) = φ(b, a) a, b ∈ A.

(4.3.1) Theorem. Let A be a finite dimensional split k-algebra. If A is symmetric
and non-semisimple, then A is not quasi-hereditary.

Proof. Suppose A is quasi-hereditary. Then, by Theorem (4.2.1), A is a standardly
full-based algebra on the weight poset Λ. Let

B = {aλ
ij | λ ∈ Λ, i ∈ I(λ), j ∈ J(λ)}

be a standard defining basis of A. Since A is symmetric with the associated sym-
metric form φ, there exists a basis for A

B′ = {cλ
ji | λ ∈ Λ, i ∈ I(λ), j ∈ J(λ)}

defined by φ(aλ
ij , c

µ
kl) = δλ,µδjkδil. A routine check shows that the following formu-

lae hold (cf. (1.2.2)):{
a · cλ

ji ≡
∑

j′∈J(λ) fλ,j(j′, a)cλ
j′i mod (A<λ

B′ ),
cλ
ji · a ≡

∑
i′∈I(λ) fi,λ(a, i′)cλ

ji′ mod (A<λ
B′ ),

(4.3.2)

where A<λ
B′ is defined with respect to B′ (see the definition after (1.1.3)). Thus B′

is a standard basis for A on Λ with reversed partial order 6′, i.e., x 6′ y if and
only if x > y, and therefore A is a standardly full-based algebra with respect to B′
by (4.2.1).

We now fix a compatible linear order {λ1, λ2, . . . , λm} for Λ as in (1.1.2). Let
Ii = spank{B′λj |j > i}. Then

0 ⊂ Im ⊂ · · · ⊂ I1 = A

is a based filtration with respect to B′ and (Λ, 6′), and hence, a heredity chain of
A by (3.2.2).

We claim that hd(Im) ∼= L(λm)⊕r. Indeed, by taking a = aµ
kl in (4.3.2) and

noting (1.2.2), we have fλ,j(j′, a) = 0 if µ 6< λ. Thus, we have

aµ
klc

λ
ji = 0 mod (A>′λ

B′ ) for µ 6< λ.(4.3.3)

Suppose now that there exists a simple module L(λ) in hd(Im) such that L(λ) 6∼=
L(λm); then λ 6< λm as λm is minimal. Since A is quasi-hereditary, there exists
a ∈ Aλ such that a ·L(λ) 6= 0. However, (4.3.3) implies a · Im = 0, a contradiction.

By the claim, λm must be maximal in Λ. But it is also minimal. Thus, any
maximal element in Λ is also minimal. This implies that any two elements in Λ are
incomparable. Therefore, any standard module ∆(λ) in A-mod is simple and every
PIM P (λ) equals ∆(λ). Consequently, every PIM is simple and A is semisimple.
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(4.3.4) Corollary. Let A be the group algebra of a finite group G. If A is split
over k and char(k) divides |G|, then A is not quasi-hereditary.

Proof. This result follows from the fact that any group algebra is symmetric.

5. Some standard bases for q-Schur algebras

In this section, we shall construct two standard bases for q-Schur algebras as
quasi-hereditary algebras. The first one is obtained by showing an existing basis to
be a standard defining base. Thus, by (3.2.1), we obtain a new proof of the quasi-
heredity of q-Schur algebras. The second one is constructed inductively as in the
proof of (4.2.3). We shall see that it agrees with the q-codeterminant basis. Thus,
this in fact gives a new and much easier method to construct the q-codeterminant
bases (cf. [Gr]).

5.1 q-Schur algebras. Let k be a commutative ring and q ∈ k invertible. A q-
Schur algebra is defined similarly as the algebras Sq(W ) described in (1.1.4(c)) for
W = Sr, the symmetric group on r letters. Let Λ(n, r) be the set of all compositions
of r into n parts (see (1.3.3)). For λ, µ ∈ Λ(n, r), the notation Wλ, Dλµ, D+

λµDλ,
etc. has an obvious meaning as defined in (1.1.4(c)). Let xλ =

∑
w∈Wλ

Tw.
By definition, the q-Schur algebra Sq(n, r) of degree (n, r) is the endomorphism

algebra

Sq(n, r) = Sk,q(n, r) = EndH

 ⊕
λ∈Λ(n,r)

xλH
 ,

where H = Hk,q. So if q = 1, then S1(n, r) is the Schur algebra we introduced in
(1.3.3).

The algebra Sq(n, r) has a natural basis like the ξ-basis for the Schur algebras:

{φw
λµ|λ, µ ∈ Λ(n, r), w ∈ Dλµ},

where φw
λµ is defined by

φw
λµ(xρh) =

{∑
y∈WλwWµ

Tyh, if ρ = µ,

0, otherwise.
(5.1.1)

In [BLM] and [Du1] the Kazhdan-Lusztig basis for SA,q(n, r) is introduced for
A := Z[t, t−1] with q = t2. Both bases are indexed by the set D(n, r) of all Wλ-Wµ

double cosets for all λ, µ ∈ Λ(n, r). Note that we can easily identify D(n, r) with
the set Ω defined in (1.3.3) and with the set {(λ, w, µ) | λ, µ ∈ Λ(n, r), w ∈ Dλµ}.

Let us denote the Kazhdan-Lusztig basis by B = {θD | D ∈ D(n, r)}. The
definition of this basis is closely related to the Bw basis (1.1.4(b)) for Hecke algebras
(see [Du1]) over A, and from [Du1, 3.4] we have

θDθD′ 6= 0 ⇒ BwDBwD′ 6= 0,(5.1.2)

where wX is the longest word of X . If we view k as an A-module via t2 7→ q, then

Sk,q(n, r) = SA,t2(n, r)⊗A k.

The basis B gives a basis for Sk,q(n, r) over an arbitrary k. Let us denote the
induced bases for Hk,q and Sk,q(n, r) by the same notation. Clearly, (5.1.2) remains
true.
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5.2 Robinson-Schensted correspondence. For λ ∈ Λ+(n, r), we may identify
λ with its corresponding diagram which consists of boxes arranged in a manner as
illustrated by the example λ = (421), for which we have

λ =

A λ-tableau t is obtained by replacing each box by one of the numbers 1, 2, · · · , r,
allowing no repeats. Let tλ be the λ-tableau in which the numbers 1, 2, · · · , r
appear in order along successive rows. The symmetric group W = Sr acts on the
set of λ-tableaux by letter permutations. For i ∈ I(n, r) a λ-tableau obtained by
putting the numbers i1, · · · , ir in the diagram of λ in order along successive rows
is called a λ-tableau of type µ = wt(i). Let T (λ, µ) denote the set of all λ-tableaux
of type µ. A λ-tableau t is called semi-standard (resp. standard) if its entries are
nondecreasing (resp. increasing) along each row and increasing along each column.
We denote by T0(λ, µ) the set of all semi-standard λ-tableaux of type µ. Clearly,
T0(λ, ω) is the set of all standard λ-tableaux where ω = (1r).

Let w 7→ (r(w), s(w)) be the Robinson-Schensted map from W to the set of pairs
of standard tableaux (see, e.g., [B]). It is well-known (cf. [BV]) that the following
holds: for x, y ∈ W :

x ∼L y (resp. x ∼R y) if and only if s(x) = s(y) (resp. r(x) = r(y)).(5.2.1)

5.3 Kazhdan-Lusztig bases. From (1.1.4(b)) we see that H is a based algebra on
the poset of two-sided cells of W . For symmetric groups, this poset is isomorphic
to the poset of partitions λ of r. For w ∈ W and h ∈ H = Hk,q, we have from [KL]
that

hBw ∈
∑

z6Lw

kBz .(5.3.1)

Thus, if w ∈ λ and we identify w with (r, s) via the Robinson-Schensted correspon-
dence, we have by (5.3.1) that

hB(r,s) ≡
∑

u∈T0(λ,ω)

αu(h, r)B(u,s) mod H>λ.(5.3.2)

Using the involution Tw 7→ Tw−1 , one sees easily that the basis Bw (w ∈ W )
satisfies (1.2.2). (The fact that αu(h, r) is independent of s can be seen as follows:
For k = A = Z[t, t−1] and a simple reflection s, we have by [KL, 4.2] that the
coefficient αu(Bs, r) defined by w = (r, s) is the same as defined by w∗ = (r, s′)
where the ∗ map is defined in [KL, 4.1]. So the independence over A, and hence
over any k, follows from the argument in [KL, §5].) So H in this case is a standardly
based algebra. Here I(λ) = J(λ) = T0(λ, ω).

We are now ready to prove that the KL bases B for a q-Schur algebra is a
standard defining base.

(5.3.3) Theorem. The q-Schur algebra Sq(n, r) is a standardly based algebra on
Λ+(n, r) with defining base B. Moreover, Sq(n, r) is quasi-hereditary over k.

Proof. By (1.1.4), Sq(n, r) is a based algebra on Λ+(n, r) with defining base B.
For λ, µ ∈ Λ(n, r), let D+

λµ be the cross section of Wλ-Wµ double cosets of
maximal length. Then, for µ ∈ Λ+(n, r), if Γµ is the left cell of W containing w0,µ,
the longest element of Wµ, then we may identify Γµ with the set T0(µ, ω) of standard
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µ-tableaux, and D+
λµ ∩Γµ with the set T0(µ, λ) of semi-standard µ-tableaux of type

λ by [Du5, 3.2-3]. Let

I(µ) = J(µ) =
⋃
λ

T0(µ, λ).

If D = WλwWν ∈ D(n, r), then wD ∈ D+
λν . By identifying Λ+(n, r) with the set of

the corresponding two-sided cells, we now assume wD ∈ µ. Then we have λ 6 µ
and ν 6 µ. This follows from the relations w0,λ >R wD and w0,ν >L wD. Let
(r, s) be the pair of standard µ-tableaux corresponding to wD; then both (r, tµ)
and (tµ, s) define uniquely two elements x−1, y with x, y ∈ Γµ respectively. That
is, w0,µ ∼L x−1 ∼R wD and w0,µ ∼R y ∼L wD. In particular, we have x−1 ∈ D+

νµ

and y ∈ D+
λµ. By [Du5, 3.3] there exist unique semi-standard tableaux u ∈ T0(µ, ν)

and v ∈ T0(µ, λ) defined by x and y. In this way, we obtain a function

f : D(n, r) →
⋃

µ∈Λ+(n,r)

I(µ)× I(µ)

sending D to f(D) = (u,v) as described above. By [Du5, 3.2-3] we see that f is a
bijection.

Now, if we let θµ
u,v = θD, then one checks easily by (5.1.2) and (5.3.2) that B is

a standard defining base for Sq(n, r).
If βλ is the corresponding bilinear form defined in (1.2.6), we have imβλ = k

for all k ∈ Λ+(n, r), since βλ(θWλ
, θWλ

) = 1. So the last assertion follows from
(3.2.1).

5.4 Canonical and semi-standard bases for standard modules. The stan-
dard basis given in (5.3.3) for a q-Schur algebra gives rise to the so-called canonical
bases for standard modules ∆(µ), which are called traditionally q-Weyl modules.
The following theorem was proved in [Du3]. A new and direct proof can be found
in [Du6].

(5.4.1) Canonical Basis Theorem. For µ ∈ Λ+(n, r), the set

{θDzµ | D ∈ D(n, r)}\{0}
forms a basis for the q-Weyl module ∆(µ), where zµ ∈ ∆(µ) is a vector of weight
µ.

So all the canonical bases form a local basis for standard modules (see (4.2.5))
and, by the approach described in (4.2.3), we can regard the Kazhdan-Lusztig basis
in (5.3.3) is defined by the local canonical basis if we assume the quasi-heredity of
Sq(n, r).

We now apply this idea to construct another standard basis for Sq(n, r) by
the semi-standard bases of q-Weyl modules. Recall from [DJ1] the bijection ∂ :
T (µ, λ) → Dλ defined by letting tλ∂(s) be the row-standard λ-tableau for which i
belongs to row a if the place occupied by i in tµ is occupied by a in s. The following
result is due to Dipper and James [DJ1].

(5.4.2) Semi-standard Basis Theorem. For µ ∈ Λ+(n, r), the q-Weyl module
∆(µ) has a basis

{φ∂(s)
λµ zµ | λ ∈ Λ(n, r), s ∈ T0(µ, λ)},

where zµ ∈ ∆(µ) is a vector of weight µ.
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The relationship between this basis and the canonical basis is discussed in [Du5].
All semi-standard bases form a local basis for standard modules. We now use this
local basis to construct another global standard basis for Sq(n, r).

5.5 q-Codeterminant bases — a new construction. Let φµ = φ1
µµ. We order

Λ+(n, r) in a manner as in (1.1.2) and let ei =
∑

j6i φµj and Ji = SeiS, where
S = Sq(n, r). Then the sequence of ideals

0 = J0 ⊆ J1 ⊆ · · · ⊆ Jm = S
is a heredity chain of the quasi-hereditary algebra S (see [CPS3, (3.7.2)]).

Let, for u ∈ T0(µ, λ) and v ∈ T0(µ, ν),

aµ
u,v = φ

∂(u)
λµ φ∂(v)−1

µν .

(5.5.1) Theorem. The set {aµ
u,v} forms a standard basis of Sq(n, r).

Proof. Let Si = S/Ji−1. Then Ji/Ji−1 = SiēiSi is a heredity ideal of Si. Since Siēi

is isomorphic to ∆(µi) and ēiSi to ∆op(µi), where ∆op(µi) is the standard right
S-module corresponding to µi, by (5.4.2) we see that the set

{φ∂(s)
λµi

ēi | λ ∈ Λ(n, r), s ∈ T0(µi, λ)}
forms a basis for Siēi, and the similar result holds for ēiSi. Therefore, the image
in Si of the set

{aµi
u,v | u ∈ I(µi),v ∈ J(µi)}

spans Ji/Ji−1, and therefore forms a basis by a comparison of ranks. Now, by
induction, we obtain that {aµ

u,v} is a basis for S. Using the bimodule isomorphism

SiēiSi
∼= ∆(µi)⊗k ∆op(µi),

we can check easily that it is a standard defining base.

(5.5.2) Remark. The basis given in (5.5.1) is the same as the codeterminant basis
of Sq(n, r) introduced in [Gr, §5] with a rather long and complicated proof. With
the theory of standard based algebras, this basis is just a global basis determined
by the local semi-standard basis for standard modules.

5.6 q-Borel subalgebras. The q-Borel subalgebras S4
q (n, r) and S<

q (n, r) of the
q-Schur algebra Sq(n, r) have been introduced in [PW, 11.6] (compare (1.3.3)). By
theorem (3.2.1), we can easily prove the following as in (1.3.3) by displaying a
standard defining base.

(5.6.1) Theorem. The q-Borel subalgebras S4
q (n, r) and S<

q (n, r) (over k!) are
integrally quasi-hereditary.

6. Standard duality and involutions

We will investigate standardly based algebras with dualities on their module
categories, and will link this to possible cellular algebra structure on them.
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6.1 Duality. As in section one, k denotes a commutative ring with 1. Let A
be a k-finite algebra. Let C be the category of left A-modules. If α is an anti-
automorphism of A, then α induces a contravariant functor DA,α on C defined as
follows. For any M ∈ Ob(C), let

M∗ = Homk(M, k)

be the linear dual of M . Then M∗ is a right A-module. Via α, we may shift the
right action to a left action. Thus we obtain a left A-module DA,α(M). In other
words, we have DA,α(M) = M∗ with (aφ)(m) = φ(α(a)m), for all φ ∈ M∗, a ∈ A
and m ∈ M .

Recall that a duality on C = A-mod for a finite dimensional algebra A over a
field k is a contravariant functor D : C → C such that if D2 ∼= idC , and D is said
to be a strong duality if D is a duality such that D(L) ∼= L for any simple object
L ∈ C. This leads to the following definition.

(6.1.1) Definition. Let A be a standardly based algebra over a commutative ring
k. Let C be the category of k-finite (left) A-modules and let Cf be the full subcat-
egory of k-free objects. A contravariant functor D : C → C is said to be a standard
duality if

(a) the restriction of D to Cf induces a functor D : Cf → Cf satisfying D2 ∼= idCf
,

and
(b) D(∆(λ)) ∼= ∇(λ) for all λ ∈ Λ (cf. (2.1.2)).

We have the following.

(6.1.2) Proposition. Let k be a field and let A be a standardly full-based algebra
over k. If D is a standard duality in the sense of (6.1.1), then D is a strong duality.

Proof. Clearly, D is a duality.
By the hypothesis and (3.2.1) we see that A is a split quasi-hereditary algebra.

So ∆(λ) and ∇(λ) defined in (2.1.2) agree with those defined in the corresponding
highest weight category (see (3.2.2)). However, D(∆(λ)) ∼= ∇(λ) is equivalent to
D(L(λ)) ∼= L(λ). Therefore, D is a strong duality.

Recall from (1.2.4) that a cellular algebra is a standardly based algebra with a
certain anti-involution. This involution interchanges the left and right quasi-cells
but leaves a two-sided quasi-cell unchanged. This motivates the following definition.

(6.1.3) Definition. Let A be a standardly based algebra over a commutative ring
k. An anti-involution α : A → A is said to be standard if

(i) DA,α is a standard duality on A-mod, and
(ii) for each λ ∈ Λ, there are j0, j1 ∈ J(λ) such that

kBI(λ),j0α(kBI(λ),j1) ≡ kBλ mod (A>λ),

where kB∗,∗ denotes the free k-submodule of A spanned by B∗,∗. We shall call a
pair (j0, j1) with the above property a λ-pair.

We shall see that the condition (ii) guarantees that α interchanges the left and
right quasi-cells defined by a certain standard defining base.

(6.1.4) Proposition. Let k be a commutative ring with 1. Let A be a standardly
based algebra on the poset Λ with defining base B = {aλ

ij}. If A has a standard
involution α, then the set

Bα = {aλ
ij0α(aλ

jj1 ) | λ ∈ Λ, i, j ∈ I(λ)},
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where (j0, j1)’s are a fixed λ-pair for each λ, is a standard defining base for A,
and Bα and α(Bα) are equivalent. Moreover, if the λ-pair (j0, j1) can be chosen
satisfying j0 = j1 for each λ ∈ Λ, then A is a cellular algebra.

Proof. By the definition, it is easy to see that the image of

Bλ
α = {aλ

ij0α(aλ
jj1 ) | i, j ∈ I(λ)}

in A/A>λ is a spanning set of Aλ, and hence a basis since #Bλ
α = rankkAλ by

(6.1.1)(b). Consequently, the set Bα is a k-basis for A. It is also clear that Bα is a
standard defining base of A.

Since both Bα and α(Bα) determine the same local basis for standard modules
(cf. (2.1.4)), they are equivalent by (4.2.6).

The last assertion is obvious.

6.2 A special case. We now look at the special case where A is standardly full-
based and the involution interchanges left and right quasi-cell modules.

(6.2.1) Proposition. Let k be a commutative local noetherian ring and let A be a
standardly full-based algebra over k. If α : A → A is an anti-involution satisfying
α(kBI(λ),j) = kBi(j),J(λ) for all λ ∈ Λ and j ∈ J(λ), then α is a standard involution.
Moreover, if, for each λ ∈ Λ, there are j, j1 ∈ J(λ) such that f(j, i(j1)) is a unit
in k, then A is cellular. (We shall call such an involution a distinguished standard
involution.)

Proof. We first note that the condition on α induces a bijection from J(λ) to I(λ)
sending j to i(j). So we may assume I(λ) = J(λ) and α(kBI(λ),j) = kBj,I(λ) for all
j ∈ J(λ).

Since k is local and A is standardly full-based, we may find a pair (i0, j0) ∈
I(λ)× I(λ) for every λ such that fλ(j0, i0) is a unit in k. Thus we obviously have

kBI(λ),j0α(kBI(λ),i0) ≡ kBλ mod (A>λ).

We now prove that DA,α is a standard duality on A-mod. For any M ∈ Ob Cf ,
the freeness of M implies M∗∗ ∼= M as k-modules. Since α2 = 1, we have a left
A-module isomorphism D2

A,αM ∼= M by the definition of DA,α. This shows that
D2

A,α
∼= idCf

. On the other hand, the hypothesis implies a k-module isomorphism
αλ : ∆(λ) → ∆op(λ) satisfying αλ(v)a = αλ(α(a)v) for all a ∈ A and v ∈ ∆(λ),
and hence a k-isomorphism

Homk(∆(λ), k)) ∼= Homk(∆op(λ), k).

Let {gλ
j } and {hλ

j } be the dual bases of {aλ
j } and {αλ(aλ

j )} respectively. Let f :
gλ

i 7→ hλ
i , and extend it linearly to the Hom spaces. Then, by (2.1.3), we have

agλ
i (aλ

j ) = gi(α(a)aλ
j ) = fi,λ(α(a), j)

and

ahλ
i (αλ(aλ

j )) = hλ
i (αλ(aλ

j )a) = hλ
i (αλ(α(a)aλ

j )) = fi,λ(α(a), j)

for any aλ
j ∈ ∆(λ). Therefore, we have af(gλ

i ) = f(agλ
i ). This shows that f is an

isomorphism of A-modules, and consequently, DA,α(∆(λ)) ∼= ∇(λ) for all λ ∈ Λ.
This proves that DA,α is a standard duality, and hence α is a standard involution.

The last assertion follows immediately.
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(6.2.2) Corollary. Let A be a split quasi-hereditary algebra over a commutative
local noetherian ring. Then A is a cellular algebra if and only if A has a distin-
guished standard involution.

Proof. Clearly, if A is cellular, then the associated involution is a distinguished
standard involution.
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