## Quantum cohomology of projective bundles over $\mathbb P^n$

HTML articles powered by AMS MathViewer

- by Zhenbo Qin and Yongbin Ruan PDF
- Trans. Amer. Math. Soc.
**350**(1998), 3615-3638 Request permission

## Abstract:

In this paper we study the quantum cohomology ring of certain projective bundles over the complex projective space $\mathbb {P}^{n}$. Using excessive intersection theory, we compute the leading coefficients in the relations among the generators of the quantum cohomology ring structure. In particular, Batyrev’s conjectural formula for quantum cohomology of projective bundles associated to direct sum of line bundles over $\mathbb {P}^{n}$ is partially verified. Moreover, relations between the quantum cohomology ring structure and Mori’s theory of extremal rays are observed. The results could shed some light on the quantum cohomology for general projective bundles.## References

- Alexander Astashkevich and Vladimir Sadov,
*Quantum cohomology of partial flag manifolds $F_{n_1\cdots n_k}$*, Comm. Math. Phys.**170**(1995), no. 3, 503–528. MR**1337131**, DOI 10.1007/BF02099147 - Victor V. Batyrev,
*Quantum cohomology rings of toric manifolds*, Astérisque**218**(1993), 9–34. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR**1265307** - A. Beauville,
*Quantum cohomology of complete intersections*, Preprint. - Ionuţ Ciocan-Fontanine,
*Quantum cohomology of flag varieties*, Internat. Math. Res. Notices**6**(1995), 263–277. MR**1344348**, DOI 10.1155/S1073792895000213 - Herbert Clemens, János Kollár, and Shigefumi Mori,
*Higher-dimensional complex geometry*, Astérisque**166**(1988), 144 pp. (1989) (English, with French summary). MR**1004926** - B. Crauder, R. Miranda,
*Quantum cohomology of rational surfaces*, The moduli space of curves (R. Dijkgraaf, C. Faber, G. van der Geer, eds.), Progress in Mathematics**129**, Birkhäuser, Boston-Basel-Berlin, 1995, pp. 33–80. - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157**, DOI 10.1007/978-1-4757-3849-0 - M. Kontsevich and Yu. Manin,
*Gromov-Witten classes, quantum cohomology, and enumerative geometry*, Comm. Math. Phys.**164**(1994), no. 3, 525–562. MR**1291244**, DOI 10.1007/BF02101490 - J. Li, G. Tian,
*Quantum cohomology of homogeneous varieties*, J. Algebraic Geom.**6**(1997), 269–305. - Christian Okonek, Michael Schneider, and Heinz Spindler,
*Vector bundles on complex projective spaces*, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR**561910** - Y. Ruan,
*Symplectic topology and extremal rays*, Geom. Funct. Anal.**3**(1993), no. 4, 395–430. MR**1223437**, DOI 10.1007/BF01896262 - Yongbin Ruan,
*Topological sigma model and Donaldson-type invariants in Gromov theory*, Duke Math. J.**83**(1996), no. 2, 461–500. MR**1390655**, DOI 10.1215/S0012-7094-96-08316-7 - Yongbin Ruan and Gang Tian,
*A mathematical theory of quantum cohomology*, J. Differential Geom.**42**(1995), no. 2, 259–367. MR**1366548** - B. Siebert, G. Tian,
*On quantum cohomology rings of Fano manifolds and a formula of Vafa and Intriligator*, Preprint. - —,
*Quantum cohomology of moduli space of stable bundles*, In preparation. - Edward Witten,
*Topological sigma models*, Comm. Math. Phys.**118**(1988), no. 3, 411–449. MR**958805**, DOI 10.1007/BF01466725

## Additional Information

**Zhenbo Qin**- Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
- Email: zq@math.okstate.edu
**Yongbin Ruan**- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
- Email: ruan@math.wisc.edu
- Received by editor(s): September 1, 1996
- Additional Notes: Both authors were partially supported by NSF grants. The second author also had a Sloan fellowship.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 3615-3638 - MSC (1991): Primary 58D99, 14J60; Secondary 14F05, 14J45
- DOI: https://doi.org/10.1090/S0002-9947-98-01968-0
- MathSciNet review: 1422617