On the subgroup structure of exceptional groups of Lie type
HTML articles powered by AMS MathViewer
- by Martin W. Liebeck and Gary M. Seitz
- Trans. Amer. Math. Soc. 350 (1998), 3409-3482
- DOI: https://doi.org/10.1090/S0002-9947-98-02121-7
- PDF | Request permission
Abstract:
We study finite subgroups of exceptional groups of Lie type, in particular maximal subgroups. Reduction theorems allow us to concentrate on almost simple subgroups, the main case being those with socle $X(q)$ of Lie type in the natural characteristic. Our approach is to show that for sufficiently large $q$ (usually $q>9$ suffices), $X(q)$ is contained in a subgroup of positive dimension in the corresponding exceptional algebraic group, stabilizing the same subspaces of the Lie algebra. Applications are given to the study of maximal subgroups of finite exceptional groups. For example, we show that all maximal subgroups of sufficiently large order arise as fixed point groups of maximal closed subgroups of positive dimension.References
- Henning Haahr Andersen, Filtrations of cohomology modules for Chevalley groups, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 4, 495–528 (1984). MR 740588, DOI 10.24033/asens.1458
- Henning Haahr Andersen, Jens Jørgensen, and Peter Landrock, The projective indecomposable modules of $\textrm {SL}(2,\,p^{n})$, Proc. London Math. Soc. (3) 46 (1983), no. 1, 38–52. MR 684821, DOI 10.1112/plms/s3-46.1.38
- Michael Aschbacher, On finite groups of Lie type and odd characteristic, J. Algebra 66 (1980), no. 2, 400–424. MR 593602, DOI 10.1016/0021-8693(80)90095-2
- Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012, DOI 10.1007/978-1-4612-0941-6
- Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
- A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs. I, Invent. Math. 12 (1971), 95–104 (French). MR 294349, DOI 10.1007/BF01404653
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- N. Burgoyne and C. Williamson, “Some computations involving simple Lie algebras”, Proc. 2nd. Symp. Symbolic and Algebraic Manipulation, (ed. S. Petrick), N.Y. Assoc. Computing Machinery, 1971, 162-171.
- E. Cline, B. Parshall, L. Scott, and Wilberd van der Kallen, Rational and generic cohomology, Invent. Math. 39 (1977), no. 2, 143–163. MR 439856, DOI 10.1007/BF01390106
- Arjeh M. Cohen and Robert L. Griess Jr., On finite simple subgroups of the complex Lie group of type $E_8$, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 367–405. MR 933426, DOI 10.1090/pspum/047.2/933426
- D. I. Deriziotis and Martin W. Liebeck, Centralizers of semisimple elements in finite twisted groups of Lie type, J. London Math. Soc. (2) 31 (1985), no. 1, 48–54. MR 810561, DOI 10.1112/jlms/s2-31.1.48
- Peter B. Gilkey and Gary M. Seitz, Some representations of exceptional Lie algebras, Geom. Dedicata 25 (1988), no. 1-3, 407–416. Geometries and groups (Noordwijkerhout, 1986). MR 925845, DOI 10.1007/BF00191935
- Daniel Gorenstein and Richard Lyons, The local structure of finite groups of characteristic $2$ type, Mem. Amer. Math. Soc. 42 (1983), no. 276, vii+731. MR 690900, DOI 10.1090/memo/0276
- J.C. Jantzen, “Low dimensional representations of reductive groups are semisimple”, in Algebraic groups and related subjects; a volume in honour of R.W. Richardson (eds. G.I. Lehrer et al.), Austral. Math. Soc. Lecture Note Series, 1996.
- Wayne Jones and Brian Parshall, On the $1$-cohomology of finite groups of Lie type, Proceedings of the Conference on Finite Groups (Univ. Utah, Park City, Utah, 1975) Academic Press, New York, 1976, pp. 313–328. MR 0404470
- R. Lawther and D.M. Testerman, “$A_1$ subgroups of exceptional algebraic groups”, Trans. Amer. Math. Soc., to appear.
- Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), no. 3, 426–446. MR 779398, DOI 10.1112/plms/s3-50.3.426
- Martin W. Liebeck and Gary M. Seitz, Maximal subgroups of exceptional groups of Lie type, finite and algebraic, Geom. Dedicata 35 (1990), no. 1-3, 353–387. MR 1066572, DOI 10.1007/BF00147353
- Martin W. Liebeck and Gary M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 121 (1996), no. 580, vi+111. MR 1329942, DOI 10.1090/memo/0580
- Martin W. Liebeck and Gary M. Seitz, Subgroups generated by root elements in groups of Lie type, Ann. of Math. (2) 139 (1994), no. 2, 293–361. MR 1274094, DOI 10.2307/2946583
- Rolf Brandl, Just nonhypercentral elements and the Bell-centre, Arch. Math. (Basel) 57 (1991), no. 4, 319–324. MR 1124492, DOI 10.1007/BF01198954
- Martin W. Liebeck, Jan Saxl, and Donna M. Testerman, Simple subgroups of large rank in groups of Lie type, Proc. London Math. Soc. (3) 72 (1996), no. 2, 425–457. MR 1367085, DOI 10.1112/plms/s3-72.2.425
- A. A. Premet, Weights of infinitesimally irreducible representations of Chevalley groups over a field of prime characteristic, Mat. Sb. (N.S.) 133(175) (1987), no. 2, 167–183, 271 (Russian); English transl., Math. USSR-Sb. 61 (1988), no. 1, 167–183. MR 905003, DOI 10.1070/SM1988v061n01ABEH003200
- Gary M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc. 67 (1987), no. 365, iv+286. MR 888704, DOI 10.1090/memo/0365
- Gary M. Seitz, Maximal subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 90 (1991), no. 441, iv+197. MR 1048074, DOI 10.1090/memo/0441
- Gary M. Seitz, Representations and maximal subgroups of finite groups of Lie type, Geom. Dedicata 25 (1988), no. 1-3, 391–406. Geometries and groups (Noordwijkerhout, 1986). MR 925844, DOI 10.1007/BF00191934
- Gary M. Seitz, Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27–56. MR 340446, DOI 10.2307/1970876
- Gary M. Seitz and Donna M. Testerman, Extending morphisms from finite to algebraic groups, J. Algebra 131 (1990), no. 2, 559–574. MR 1058566, DOI 10.1016/0021-8693(90)90195-T
- G.M. Seitz and D.M. Testerman, “Subgroups of type $A_1$ containing semiregular unipotent elements”, J. Algebra 196 (1997), 595–619.
- Peter Sin, Extensions of simple modules for $\textrm {SL}_3(2^n)$ and $\textrm {SU}_3(2^n)$, Proc. London Math. Soc. (3) 65 (1992), no. 2, 265–296. MR 1168189, DOI 10.1112/plms/s3-65.2.265
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Donna M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc. 75 (1988), no. 390, iv+190. MR 961210, DOI 10.1090/memo/0390
- Donna M. Testerman, A construction of certain maximal subgroups of the algebraic groups $E_6$ and $F_4$, J. Algebra 122 (1989), no. 2, 299–322. MR 999075, DOI 10.1016/0021-8693(89)90218-4
Bibliographic Information
- Martin W. Liebeck
- Affiliation: Department of Mathematics, Imperial College, London SW7 2BZ, United Kingdom
- MR Author ID: 113845
- ORCID: 0000-0002-3284-9899
- Email: m.liebeck@ic.ac.uk
- Gary M. Seitz
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: seitz@math.uoregon.edu
- Received by editor(s): October 11, 1996
- Additional Notes: The authors acknowledge the support of NATO Collaborative Research Grant CRG 931394. The second author also acknowledges the support of an NSF Grant
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 3409-3482
- MSC (1991): Primary 20G40, 20E28
- DOI: https://doi.org/10.1090/S0002-9947-98-02121-7
- MathSciNet review: 1458329