## Local and global properties of limit sets of foliations of quasigeodesic Anosov flows

HTML articles powered by AMS MathViewer

- by Sérgio R. Fenley PDF
- Trans. Amer. Math. Soc.
**350**(1998), 3923-3941 Request permission

## Abstract:

A nonsingular flow is quasigeodesic when all flow lines are efficient in measuring distances in relative homotopy classes. We analyze the quasigeodesic property for Anosov flows in $3$-manifolds which have negatively curved fundamental group. We show that this property implies that limit sets of stable and unstable leaves (in the universal cover) vary continuously in the sphere at infinity. It also follows that the union of the limit sets of all stable (or unstable) leaves is not the whole sphere at infinity. Finally, under the quasigeodesic hypothesis we completely determine when limit sets of leaves in the universal cover can intersect. This is done by determining exactly when flow lines in the universal cover share an ideal point.## References

- D. V. Anosov,
*Geodesic flows on closed Riemann manifolds with negative curvature.*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by S. Feder. MR**0242194** - Thierry Barbot,
*Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles*, Ergodic Theory Dynam. Systems**15**(1995), no. 2, 247–270 (French, with English summary). MR**1332403**, DOI 10.1017/S0143385700008361 - Thierry Barbot,
*Flots d’Anosov sur les variétés graphées au sens de Waldhausen*, Ann. Inst. Fourier (Grenoble)**46**(1996), no. 5, 1451–1517 (French, with English and French summaries). MR**1427133** - Mladen Bestvina and Geoffrey Mess,
*The boundary of negatively curved groups*, J. Amer. Math. Soc.**4**(1991), no. 3, 469–481. MR**1096169**, DOI 10.1090/S0894-0347-1991-1096169-1 - Rufus Bowen,
*Periodic orbits for hyperbolic flows*, Amer. J. Math.**94**(1972), 1–30. MR**298700**, DOI 10.2307/2373590 - Marc Frisch,
*Propriétés asymptotiques des vibrations du tore*, J. Math. Pures Appl. (9)**54**(1975), no. 3, 285–303 (French). MR**442999** - J. Cannon and W. Thurston,
*Group invariant Peano curves*, to appear. - J. Christy,
*Intransitive Anosov flows on $3$-manifolds*, to appear in C.B.M.S. lecture series. - Sérgio R. Fenley,
*Asymptotic properties of depth one foliations in hyperbolic $3$-manifolds*, J. Differential Geom.**36**(1992), no. 2, 269–313. MR**1180384** - Sérgio R. Fenley,
*Quasi-isometric foliations*, Topology**31**(1992), no. 3, 667–676. MR**1174265**, DOI 10.1016/0040-9383(92)90057-O - Sérgio R. Fenley,
*Anosov flows in $3$-manifolds*, Ann. of Math. (2)**139**(1994), no. 1, 79–115. MR**1259365**, DOI 10.2307/2946628 - Sérgio R. Fenley,
*Quasigeodesic Anosov flows and homotopic properties of flow lines*, J. Differential Geom.**41**(1995), no. 2, 479–514. MR**1331975** - S. Fenley,
*Continuous extension of Anosov foliations in $3$-manifolds with negatively curved fundamental group*, to appear in Pacific J. Math. - S. Fenley,
*Homotopic indivisibility of closed orbits of Anosov flows in dimension $3$*, Math. Zeit.**225**(1997), 289–294. - Sérgio R. Fenley,
*One sided branching in Anosov foliations*, Comment. Math. Helv.**70**(1995), no. 2, 248–266. MR**1324629**, DOI 10.1007/BF02566007 - S. Fenley,
*The structure of branching in Anosov flows of $3$-manifolds*, Comment. Math. Helv. (1998). - S. Fenley and L. Mosher,
*Quasigeodesic flows in hyperbolic $3$-manifolds*, preprint. - Étienne Ghys,
*Flots d’Anosov sur les $3$-variétés fibrées en cercles*, Ergodic Theory Dynam. Systems**4**(1984), no. 1, 67–80 (French, with English summary). MR**758894**, DOI 10.1017/S0143385700002273 - É. Ghys and P. de la Harpe (eds.),
*Sur les groupes hyperboliques d’après Mikhael Gromov*, Progress in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1990 (French). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR**1086648**, DOI 10.1007/978-1-4684-9167-8 - J. Palis Jr. (ed.),
*Geometric dynamics*, Lecture Notes in Mathematics, vol. 1007, Springer-Verlag, Berlin-New York, 1983. MR**730258** - M. Gromov,
*Hyperbolic groups*, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR**919829**, DOI 10.1007/978-1-4613-9586-7_{3} - John W. Morgan and Hyman Bass (eds.),
*The Smith conjecture*, Pure and Applied Mathematics, vol. 112, Academic Press, Inc., Orlando, FL, 1984. Papers presented at the symposium held at Columbia University, New York, 1979. MR**758459** - Lee Mosher,
*Dynamical systems and the homology norm of a $3$-manifold. I. Efficient intersection of surfaces and flows*, Duke Math. J.**65**(1992), no. 3, 449–500. MR**1154179**, DOI 10.1215/S0012-7094-92-06518-5 - Lee Mosher,
*Dynamical systems and the homology norm of a $3$-manifold. I. Efficient intersection of surfaces and flows*, Duke Math. J.**65**(1992), no. 3, 449–500. MR**1154179**, DOI 10.1215/S0012-7094-92-06518-5 - Lee Mosher,
*Examples of quasi-geodesic flows on hyperbolic $3$-manifolds*, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 227–241. MR**1184414** - S. P. Novikov,
*The topology of foliations*, Trudy Moskov. Mat. Obšč.**14**(1965), 248–278 (Russian). MR**0200938** - Carlos Frederico Borges Palmeira,
*Open manifolds foliated by planes*, Ann. of Math. (2)**107**(1978), no. 1, 109–131. MR**501018**, DOI 10.2307/1971256 - Joseph F. Plante,
*Anosov flows*, Amer. J. Math.**94**(1972), 729–754. MR**377930**, DOI 10.2307/2373755 - J. F. Plante,
*Anosov flows, transversely affine foliations, and a conjecture of Verjovsky*, J. London Math. Soc. (2)**23**(1981), no. 2, 359–362. MR**609116**, DOI 10.1112/jlms/s2-23.2.359 - J. F. Plante,
*Solvable groups acting on the line*, Trans. Amer. Math. Soc.**278**(1983), no. 1, 401–414. MR**697084**, DOI 10.1090/S0002-9947-1983-0697084-7 - S. Smale,
*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747–817. MR**228014**, DOI 10.1090/S0002-9904-1967-11798-1 - Dennis Sullivan,
*Cycles for the dynamical study of foliated manifolds and complex manifolds*, Invent. Math.**36**(1976), 225–255. MR**433464**, DOI 10.1007/BF01390011 - W. Thurston,
*The geometry and topology of 3-manifolds*, Princeton University Lecture Notes, 1982. - William P. Thurston,
*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, DOI 10.1090/S0273-0979-1982-15003-0

## Additional Information

**Sérgio R. Fenley**- Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130; Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
- Email: fenley@math.princeton.edu
- Received by editor(s): December 18, 1995
- Received by editor(s) in revised form: November 11, 1996
- Additional Notes: Reseach supported by NSF grants DMS-9201744 and an NSF postdoctoral fellowship
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 3923-3941 - MSC (1991): Primary 57R30, 58F25, 58F15; Secondary 58F22, 53C12
- DOI: https://doi.org/10.1090/S0002-9947-98-01973-4
- MathSciNet review: 1432199