Computations in generic representation theory: maps from symmetric powers to composite functors

Author:
Nicholas J. Kuhn

Journal:
Trans. Amer. Math. Soc. **350** (1998), 4221-4233

MSC (1991):
Primary 20G05; Secondary 55S10, 55S12

DOI:
https://doi.org/10.1090/S0002-9947-98-02012-1

MathSciNet review:
1443197

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $\mathbf {F}_q$ is the finite field of order $q$ and characteristic $p$, let $\mathcal {F}(q)$ be the category whose objects are functors from finite dimensional $\mathbf {F}_q$–vector spaces to $\mathbf {F}_q$–vector spaces, and with morphisms the natural transformations between such functors. Important families of objects in $\mathcal {F}(q)$ include the families $S_n, S^n, \Lambda ^n, \bar {S}^n$, and $cT^n$, with $c \in \mathbf {F}_q[\Sigma _n]$, defined by $S_n(V) = (V^{\otimes n})^{\Sigma _n}$,$S^n(V) = V^{\otimes n}/\Sigma _n$, $\Lambda ^n(V) = n^{th} \text { exterior power of } V$, $\bar {S}^*(V) = S^*(V)/(p^{th} \text { powers})$, and $cT^n(V) = c(V^{\otimes n})$. Fixing $F$, we discuss the problem of computing $\operatorname {Hom}_{\mathcal {F}(q)}(S_m, F \circ G)$, for all $m$, given knowledge of $\operatorname {Hom}_{\mathcal {F}(q)}(S_m, G)$ for all $m$. When $q = p$, we get a complete answer for any functor $F$ chosen from the families listed above. Our techniques involve Steenrod algebra technology, and, indeed, our most striking example, when $F=S^n$, arose in recent work on the homology of iterated loopspaces.

- J. F. Adams and C. W. Wilkerson,
*Finite $H$-spaces and algebras over the Steenrod algebra*, Ann. of Math. (2)**111**(1980), no. 1, 95–143. MR**558398**, DOI https://doi.org/10.2307/1971218 - S. Eilenberg and S. Mac Lane,
*On the groups $H(\pi , n)$, II*, Ann. Math.**60**(1954), 49–139. - V. Franjou and L. Schwartz,
*Reduced unstable $A$-modules and the modular representation theory of the symmetric groups*, Ann. Sci. École Norm. Sup. (4)**23**(1990), no. 4, 593–624 (English, with French summary). MR**1072819** - Pierre Gabriel,
*Des catégories abéliennes*, Bull. Soc. Math. France**90**(1962), 323–448 (French). MR**232821** - H.-W. Henn, J. Lannes, and L. Schwartz
*The categories of unstable modules and unstable algebras modulo nilpotent objects*, Amer. J. Math.**115**(1993), 1053–1106. - Piotr Krasoń and Nicholas J. Kuhn,
*On embedding polynomial functors in symmetric powers*, J. Algebra**163**(1994), no. 1, 281–294. MR**1257319**, DOI https://doi.org/10.1006/jabr.1994.1018 - Nicholas J. Kuhn,
*Generic representations of the finite general linear groups and the Steenrod algebra. I*, Amer. J. Math.**116**(1994), no. 2, 327–360. MR**1269607**, DOI https://doi.org/10.2307/2374932 - Nicholas J. Kuhn,
*Generic representations of the finite general linear groups and the Steenrod algebra. II*, $K$-Theory**8**(1994), no. 4, 395–428. MR**1300547**, DOI https://doi.org/10.1007/BF00961409 - Nicholas J. Kuhn,
*Generic representations of the finite general linear groups and the Steenrod algebra. III*, $K$-Theory**9**(1995), no. 3, 273–303. MR**1344142**, DOI https://doi.org/10.1007/BF00961668 - Nicholas J. Kuhn,
*Generic representation theory and Lannes’ $T$-functor*, Adams Memorial Symposium on Algebraic Topology, 2 (Manchester, 1990) London Math. Soc. Lecture Note Ser., vol. 176, Cambridge Univ. Press, Cambridge, 1992, pp. 235–262. MR**1232209**, DOI https://doi.org/10.1017/CBO9780511526312.021 - N. J. Kuhn,
*New cohomological relationships among loopspaces, symmetric products, and Eilenberg Mac Lane spaces*, preprint, 1996. - Jean Lannes,
*Sur les espaces fonctionnels dont la source est le classifiant d’un $p$-groupe abélien élémentaire*, Inst. Hautes Études Sci. Publ. Math.**75**(1992), 135–244 (French). With an appendix by Michel Zisman. MR**1179079** - Jean Lannes and Lionel Schwartz,
*Sur la structure des $A$-modules instables injectifs*, Topology**28**(1989), no. 2, 153–169 (French). MR**1003580**, DOI https://doi.org/10.1016/0040-9383%2889%2990018-9 - I. G. Macdonald,
*Symmetric functions and Hall polynomials*, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR**553598** - John Milnor,
*The Steenrod algebra and its dual*, Ann. of Math. (2)**67**(1958), 150–171. MR**99653**, DOI https://doi.org/10.2307/1969932 - N. Popescu,
*Abelian categories with applications to rings and modules*, Academic Press, London-New York, 1973. London Mathematical Society Monographs, No. 3. MR**0340375** - N. E. Steenrod,
*Cohomology operations*, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR**0145525**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
20G05,
55S10,
55S12

Retrieve articles in all journals with MSC (1991): 20G05, 55S10, 55S12

Additional Information

**Nicholas J. Kuhn**

Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Email:
njk4x@virginia.edu

Received by editor(s):
September 11, 1996

Received by editor(s) in revised form:
January 3, 1997

Additional Notes:
Partially supported by the N.S.F. and the C.N.R.S

Article copyright:
© Copyright 1998
American Mathematical Society