## On the connection between the existence of zeros and the asymptotic behavior of resolvents of maximal monotone operators in reflexive Banach spaces

HTML articles powered by AMS MathViewer

- by Athanassios G. Kartsatos PDF
- Trans. Amer. Math. Soc.
**350**(1998), 3967-3987 Request permission

## Abstract:

A more systematic approach is introduced in the theory of zeros of maximal monotone operators $T:X\supset D(T)\to 2^{X^{*}}$, where $X$ is a real Banach space. A basic pair of necessary and sufficient boundary conditions is given for the existence of a zero of such an operator $T$. These conditions are then shown to be equivalent to a certain asymptotic behavior of the resolvents or the Yosida resolvents of $T$. Furthermore, several interesting corollaries are given, and the extendability of the necessary and sufficient conditions to the existence of zeros of locally defined, demicontinuous, monotone mappings is demonstrated. A result of Guan, about a pathwise connected set lying in the range of a monotone operator, is improved by including non-convex domains. A partial answer to Nirenberg’s problem is also given. Namely, it is shown that a continuous, expansive mapping $T$ on a real Hilbert space $H$ is surjective if there exists a constant $\alpha \in (0,1)$ such that $\langle Tx-Ty,x-y\rangle \ge -\alpha \|x-y\|^{2},~x,~y\in H.$ The methods for these results do not involve explicit use of any degree theory.## References

- Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771–782. MR**19**, DOI 10.2307/2371335 - Saunders MacLane and O. F. G. Schilling,
*Infinite number fields with Noether ideal theories*, Amer. J. Math.**61**(1939), 771–782. MR**19**, DOI 10.2307/2371335 - Philip Hartman,
*Positive and monotone solutions of linear ordinary differential equations*, J. Differential Equations**18**(1975), no. 2, 431–452. MR**390340**, DOI 10.1016/0022-0396(75)90073-X - H. Brezis, M. G. Crandall, and A. Pazy,
*Perturbations of nonlinear maximal monotone sets in Banach space*, Comm. Pure Appl. Math.**23**(1970), 123–144. MR**257805**, DOI 10.1002/cpa.3160230107 - Felix E. Browder,
*Nonlinear operators and nonlinear equations of evolution in Banach spaces*, Nonlinear functional analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1976, pp. 1–308. MR**0405188** - Felix E. Browder,
*The degree of mapping, and its generalizations*, Topological methods in nonlinear functional analysis (Toronto, Ont., 1982) Contemp. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1983, pp. 15–40. MR**729503**, DOI 10.1090/conm/021/729503 - Kung Ching Chang and Shu Jie Li,
*A remark on expanding maps*, Proc. Amer. Math. Soc.**85**(1982), no. 4, 583–586. MR**660608**, DOI 10.1090/S0002-9939-1982-0660608-4 - Zouhua Ding and Athanassios G. Kartsatos,
*Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces*, Nonlinear Anal.**25**(1995), no. 12, 1333–1342. MR**1355726**, DOI 10.1016/0362-546X(94)00251-C - Zouhua Ding and Athanassios G. Kartsatos,
*$p$-regular mappings and alternative results for perturbations of $m$-accretive operators in Banach spaces*, Topol. Methods Nonlinear Anal.**5**(1995), no. 2, 291–304. MR**1374066**, DOI 10.12775/TMNA.1995.020 - Wen Zhi Zeng,
*Probability contractors with nonlinear majorant functions*, J. Math. Res. Exposition**14**(1994), no. 1, 145–148 (Chinese, with English and Chinese summaries). MR**1267668** - Zhengyuan Guan,
*Solvability of semilinear equations with compact perturbations of operators of monotone type*, Proc. Amer. Math. Soc.**121**(1994), no. 1, 93–102. MR**1174492**, DOI 10.1090/S0002-9939-1994-1174492-4 - Zhengyuan Guan and Athanassios G. Kartsatos,
*Solvability of nonlinear equations with coercivity generated by compact perturbations of $m$-accretive operators in Banach spaces*, Houston J. Math.**21**(1995), no. 1, 149–188. MR**1331252** - Zhengyuan Guan and Athanassios G. Kartsatos,
*On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces*, Nonlinear Anal.**27**(1996), no. 2, 125–141. MR**1389473**, DOI 10.1016/0362-546X(95)00016-O - Zhengyuan Guan and Athanassios G. Kartsatos,
*Ranges of perturbed maximal monotone and $m$-accretive operators in Banach spaces*, Trans. Amer. Math. Soc.**347**(1995), no. 7, 2403–2435. MR**1297527**, DOI 10.1090/S0002-9947-1995-1297527-2 - Norimichi Hirano and A. K. Kalinde,
*On perturbations of $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**124**(1996), no. 4, 1183–1190. MR**1301029**, DOI 10.1090/S0002-9939-96-03140-1 - D. R. Kaplan and A. G. Kartsatos,
*Ranges of sums and control of nonlinear evolutions with preassigned responses*, J. Optim. Theory Appl.**81**(1994), no. 1, 121–141. MR**1275960**, DOI 10.1007/BF02190316 - Athanassios G. Kartsatos,
*Some mapping theorems for accretive operators in Banach spaces*, J. Math. Anal. Appl.**82**(1981), no. 1, 169–183. MR**626747**, DOI 10.1016/0022-247X(81)90231-6 - V. Lakshmikantham (ed.),
*World Congress of Nonlinear Analysts ’92. Vol. I–IV*, Walter de Gruyter & Co., Berlin, 1996. MR**1389056**, DOI 10.1515/9783110883237 - Athanassios G. Kartsatos,
*On compact perturbations and compact resolvents of nonlinear $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**119**(1993), no. 4, 1189–1199. MR**1216817**, DOI 10.1090/S0002-9939-1993-1216817-6 - Athanassios G. Kartsatos,
*Sets in the ranges of sums for perturbations of nonlinear $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**123**(1995), no. 1, 145–156. MR**1213863**, DOI 10.1090/S0002-9939-1995-1213863-5 - Athanassios G. Kartsatos,
*On the construction of methods of lines for functional evolutions in general Banach spaces*, Nonlinear Anal.**25**(1995), no. 12, 1321–1331. MR**1355725**, DOI 10.1016/0362-546X(94)00250-L - Athanassios G. Kartsatos,
*A compact evolution operator generated by a nonlinear time-dependent $m$-accretive operator in a Banach space*, Math. Ann.**302**(1995), no. 3, 473–487. MR**1339922**, DOI 10.1007/BF01444503 - Athanassios G. Kartsatos,
*Sets in the ranges of nonlinear accretive operators in Banach spaces*, Studia Math.**114**(1995), no. 3, 261–273. MR**1338831**, DOI 10.4064/sm-114-3-261-273 - Athanassios G. Kartsatos,
*Degree-theoretic solvability of inclusions involving perturbations of nonlinear $m$-accretive operators in Banach spaces*, Yokohama Math. J.**42**(1994), no. 2, 171–182. MR**1332006** - Athanassios G. Kartsatos,
*On the perturbation theory of $m$-accretive operators in Banach spaces*, Proc. Amer. Math. Soc.**124**(1996), no. 6, 1811–1820. MR**1327021**, DOI 10.1090/S0002-9939-96-03349-7 - Athanassios G. Kartsatos,
*New results in the perturbation theory of maximal monotone and $m$-accretive operators in Banach spaces*, Trans. Amer. Math. Soc.**348**(1996), no. 5, 1663–1707. MR**1357397**, DOI 10.1090/S0002-9947-96-01654-6 - Athanassios G. Kartsatos and Xiaoping Liu,
*Nonlinear equations involving compact perturbations of $m$-accretive operators in Banach spaces*, Nonlinear Anal.**24**(1995), no. 4, 469–492. MR**1315690**, DOI 10.1016/0362-546X(94)00102-N - A. G. Kartsatos and R. D. Mabry,
*Controlling the space with preassigned responses*, J. Optim. Theory Appl.**54**(1987), no. 3, 517–540. MR**906167**, DOI 10.1007/BF00940200 - W. A. Kirk and R. Schöneberg,
*Zeros of $m$-accretive operators in Banach spaces*, Israel J. Math.**35**(1980), no. 1-2, 1–8. MR**576458**, DOI 10.1007/BF02760935 - Claudio Morales,
*Nonlinear equations involving $m$-accretive operators*, J. Math. Anal. Appl.**97**(1983), no. 2, 329–336. MR**723235**, DOI 10.1016/0022-247X(83)90199-3 - Claudio Morales,
*Existence theorems for demicontinuous accretive operators in Banach spaces*, Houston J. Math.**10**(1984), no. 4, 535–543. MR**774716** - Jean-Michel Morel and Heinrich Steinlein,
*On a problem of Nirenberg concerning expanding maps*, J. Funct. Anal.**59**(1984), no. 1, 145–150. MR**763781**, DOI 10.1016/0022-1236(84)90057-0 - L. Nirenberg,
*Topics in nonlinear functional analysis*, Courant Institute of Mathematical Sciences, New York University, New York, 1974. With a chapter by E. Zehnder; Notes by R. A. Artino; Lecture Notes, 1973–1974. MR**0488102** - Jong An Park,
*Invariance of domain theorem for demicontinuous mappings of type $(S_+)$*, Bull. Korean Math. Soc.**29**(1992), no. 1, 81–87. MR**1157248** - Dan Pascali and Silviu Sburlan,
*Nonlinear mappings of monotone type*, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1978. MR**531036** - Simeon Reich,
*Strong convergence theorems for resolvents of accretive operators in Banach spaces*, J. Math. Anal. Appl.**75**(1980), no. 1, 287–292. MR**576291**, DOI 10.1016/0022-247X(80)90323-6 - Simeon Reich and Ricardo Torrejón,
*Zeros of accretive operators*, Comment. Math. Univ. Carolin.**21**(1980), no. 3, 619–625. MR**590139** - I. V. Skrypnik,
*Methods for analysis of nonlinear elliptic boundary value problems*, Translations of Mathematical Monographs, vol. 139, American Mathematical Society, Providence, RI, 1994. Translated from the 1990 Russian original by Dan D. Pascali. MR**1297765**, DOI 10.1090/mmono/139 - Guang Hong Yang,
*The ranges of nonlinear mappings of monotone type*, J. Math. Anal. Appl.**173**(1993), no. 1, 165–172. MR**1205916**, DOI 10.1006/jmaa.1993.1059 - Eberhard Zeidler,
*Nonlinear functional analysis and its applications. II/B*, Springer-Verlag, New York, 1990. Nonlinear monotone operators; Translated from the German by the author and Leo F. Boron. MR**1033498**, DOI 10.1007/978-1-4612-0985-0

## Additional Information

**Athanassios G. Kartsatos**- Affiliation: Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700
- Email: hermes@tarski.math.usf.edu
- Received by editor(s): March 6, 1995
- Received by editor(s) in revised form: November 7, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 3967-3987 - MSC (1991): Primary 47H17; Secondary 47H05, 47H10
- DOI: https://doi.org/10.1090/S0002-9947-98-02033-9
- MathSciNet review: 1443880