## Test ideals in quotients of $F$-finite regular local rings

HTML articles powered by AMS MathViewer

- by Janet Cowden Vassilev PDF
- Trans. Amer. Math. Soc.
**350**(1998), 4041-4051 Request permission

## Abstract:

Let $S$ be an $F$-finite regular local ring and $I$ an ideal contained in $S$. Let $R=S/I$. Fedder proved that $R$ is $F$-pure if and only if $(I^{[p]}:I) \nsubseteq \mathfrak {m}^{[p]}$. We have noted a new proof for his criterion, along with showing that $(I^{[q]}:I) \subseteq (\tau ^{[q]}:\tau )$, where $\tau$ is the pullback of the test ideal for $R$. Combining the the $F$-purity criterion and the above result we see that if $R=S/I$ is $F$-pure then $R/\tau$ is also $F$-pure. In fact, we can form a filtration of $R$, $I \subseteq \tau = \tau _{0} \subseteq \tau _{1} \subseteq \ldots \subseteq \tau _{i} \subseteq \ldots$ that stabilizes such that each $R/\tau _{i}$ is $F$-pure and its test ideal is $\tau _{i+1}$. To find examples of these filtrations we have made explicit calculations of test ideals in the following setting: Let $R=T/I$, where $T$ is either a polynomial or a power series ring and $I= P_{1} \cap \ldots \cap P_{n}$ is generated by monomials and the $R/P_{i}$ are regular. Set $J = \Sigma (P_{1} \cap \ldots \cap \hat {P_{i}} \cap \ldots \cap P_{n})$. Then $J=\tau =\tau _{par}$.## References

- Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - Richard Fedder,
*$F$-purity and rational singularity*, Trans. Amer. Math. Soc.**278**(1983), no. 2, 461–480. MR**701505**, DOI 10.1090/S0002-9947-1983-0701505-0 - Richard Fedder and Keiichi Watanabe,
*A characterization of $F$-regularity in terms of $F$-purity*, Commutative algebra (Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., vol. 15, Springer, New York, 1989, pp. 227–245. MR**1015520**, DOI 10.1007/978-1-4612-3660-3_{1}1 - Donna Glassbrenner,
*Strong $F$-regularity in images of regular rings*, Proc. Amer. Math. Soc.**124**(1996), no. 2, 345–353. MR**1291770**, DOI 10.1090/S0002-9939-96-03030-4 - Shiro Goto and Keiichi Watanabe,
*The structure of one-dimensional $F$-pure rings*, J. Algebra**49**(1977), no. 2, 415–421. MR**453729**, DOI 10.1016/0021-8693(77)90250-2 - Hara, N.,
*A characterization of rational singularities in terms of injectivity of Frobenius maps*, preprint. - Melvin Hochster,
*Cyclic purity versus purity in excellent Noetherian rings*, Trans. Amer. Math. Soc.**231**(1977), no. 2, 463–488. MR**463152**, DOI 10.1090/S0002-9947-1977-0463152-5 - Melvin Hochster and Craig Huneke,
*Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc.**3**(1990), no. 1, 31–116. MR**1017784**, DOI 10.1090/S0894-0347-1990-1017784-6 - Melvin Hochster and Craig Huneke,
*Tight closure and strong $F$-regularity*, Mém. Soc. Math. France (N.S.)**38**(1989), 119–133. Colloque en l’honneur de Pierre Samuel (Orsay, 1987). MR**1044348** - Melvin Hochster and Craig Huneke,
*$F$-regularity, test elements, and smooth base change*, Trans. Amer. Math. Soc.**346**(1994), no. 1, 1–62. MR**1273534**, DOI 10.1090/S0002-9947-1994-1273534-X - Craig Huneke,
*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), no. 2, 293–318. MR**894879**, DOI 10.1307/mmj/1029003560 - Huneke, C. and Smith, K.,
*Tight closure and the Kodaira vanishing theorem*, J. Reine Angew. Matth.**484**(1997), 127–152. - Ernst Kunz,
*Characterizations of regular local rings of characteristic $p$*, Amer. J. Math.**91**(1969), 772–784. MR**252389**, DOI 10.2307/2373351 - Ernst Kunz,
*On Noetherian rings of characteristic $p$*, Amer. J. Math.**98**(1976), no. 4, 999–1013. MR**432625**, DOI 10.2307/2374038 - Karen E. Smith,
*Test ideals in local rings*, Trans. Amer. Math. Soc.**347**(1995), no. 9, 3453–3472. MR**1311917**, DOI 10.1090/S0002-9947-1995-1311917-0 - Karen E. Smith,
*The $D$-module structure of $F$-split rings*, Math. Res. Lett.**2**(1995), no. 4, 377–386. MR**1355702**, DOI 10.4310/MRL.1995.v2.n4.a1

## Additional Information

**Janet Cowden Vassilev**- Affiliation: Department of Mathematics, University of California, Los Angeles, California 90024
- Address at time of publication: Department of Mathematical Sciences, Virginia Commonwealth University, Richmond, Virginia 23284
- Email: jcvassil@saturn.vcu.edu
- Received by editor(s): November 4, 1996
- Additional Notes: I would like to express my appreciation to Purdue University for hosting me during the time that I completed these results. I also thank Craig Huneke for many helpful conversations.
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 4041-4051 - MSC (1991): Primary 13A35
- DOI: https://doi.org/10.1090/S0002-9947-98-02128-X
- MathSciNet review: 1458336