An inverse problem for scattering by a doubly periodic structure
HTML articles powered by AMS MathViewer
- by Gang Bao and Zhengfang Zhou
- Trans. Amer. Math. Soc. 350 (1998), 4089-4103
- DOI: https://doi.org/10.1090/S0002-9947-98-02227-2
- PDF | Request permission
Abstract:
Consider scattering of electromagnetic waves by a doubly periodic structure $S=\{x_3=f(x_1, x_2)\}$ with $f(x_1+n_1\Lambda _1, x_2+n_2\Lambda _2)=f(x_1, x_2)$ for integers $n_1$, $n_2$. Above the structure, the medium is assumed to be homogeneous with a constant dielectric coefficient. The medium is a perfect conductor below the structure. An inverse problem arises and may be described as follows. For a given incident plane wave, the tangential electric field is measured away from the structure, say at $x_3=b$ for some large $b$. To what extent can one determine the location of the periodic structure that separates the dielectric medium from the conductor? In this paper, results on uniqueness and stability are established for the inverse problem. A crucial step in our proof is to obtain a lower bound for the first eigenvalue of the following problem in a convex domain $\Omega$: \[ \left \{ \begin {array}{l} - \triangle u = \lambda u \quad \text {in} \quad \Omega , \ \nabla \cdot u = 0 \quad \text {in} \quad \Omega , \ n \times u = 0 \quad \text {on} \quad \partial \Omega . \end {array} \right . \]References
- Toufic Abboud, Formulation variationnelle des équations de Maxwell dans un réseau bipériodique de $\textbf {R}^3$, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 245–248 (French, with English and French summaries). MR 1233420
- Toufic Abboud and Jean-Claude Nédélec, Electromagnetic waves in an inhomogeneous medium, J. Math. Anal. Appl. 164 (1992), no. 1, 40–58. MR 1146575, DOI 10.1016/0022-247X(92)90144-3
- Habib Ammari, Théorèmes d’unicité pour un problème inverse dans une structure bipériodique, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 7, 815–820 (French, with English and French summaries). MR 1326688
- Gang Bao, A uniqueness theorem for an inverse problem in periodic diffractive optics, Inverse Problems 10 (1994), no. 2, 335–340. MR 1269011
- Gang Bao, Variational approximation of Maxwell’s equations in biperiodic structures, SIAM J. Appl. Math. 57 (1997), no. 2, 364–381. MR 1438758, DOI 10.1137/S0036139995279408
- Gang Bao and Avner Friedman, Inverse problems for scattering by periodic structures, Arch. Rational Mech. Anal. 132 (1995), no. 1, 49–72. MR 1360080, DOI 10.1007/BF00390349
- David Colton and Rainer Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1992. MR 1183732, DOI 10.1007/978-3-662-02835-3
- D. C. Dobson, A variational method for electromagnetic diffraction in biperiodic structures, RAIRO Modél. Math. Anal. Numér. 28 (1994), no. 4, 419–439. MR 1288506, DOI 10.1051/m2an/1994280404191
- David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl. 166 (1992), no. 2, 507–528. MR 1160941, DOI 10.1016/0022-247X(92)90312-2
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286–292 (1960). MR 117419, DOI 10.1007/BF00252910
- Roger Petit (ed.), Electromagnetic theory of gratings, Topics in Current Physics, vol. 22, Springer-Verlag, Berlin-New York, 1980. MR 609533
Bibliographic Information
- Gang Bao
- Affiliation: Department of Mathematics University of Florida Gainesville, Florida 32611
- Email: bao@math.ufl.edu
- Zhengfang Zhou
- Affiliation: Department of Mathematics Michigan State University East Lansing, Michigan 48824
- Email: zfzhou@math.msu.edu
- Received by editor(s): September 18, 1996
- Additional Notes: The research of the first author was partially supported by NSF grant DMS 95-01099, NSF University-Industry Cooperative Research Programs grant DMS 97-05139, and a Research Development Award (University of Florida)
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4089-4103
- MSC (1991): Primary 35R30; Secondary 35P15, 78A45
- DOI: https://doi.org/10.1090/S0002-9947-98-02227-2
- MathSciNet review: 1487607