Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the rigidity theorem for elliptic genera


Authors: Anand Dessai and Rainer Jung
Journal: Trans. Amer. Math. Soc. 350 (1998), 4195-4220
MSC (1991): Primary 58G10, 19L47, 11F03; Secondary 57S15, 13N10
DOI: https://doi.org/10.1090/S0002-9947-98-02321-6
MathSciNet review: 1608301
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a detailed proof of the rigidity theorem for elliptic genera. Using the Lefschetz fixed point formula we carefully analyze the relation between the characteristic power series defining the elliptic genera and the equivariant elliptic genera. We show that equivariant elliptic genera converge to Jacobi functions which are holomorphic. This implies the rigidity of elliptic genera. Our approach can be easily modified to give a proof of the rigidity theorem for the elliptic genera of level $N$.


References [Enhancements On Off] (What's this?)

  • Lars V. Ahlfors, Complex analysis: An introduction of the theory of analytic functions of one complex variable, 2nd ed., McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0188405
  • M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI https://doi.org/10.2307/1970717
  • Henri Cartan, Elementary theory of analytic functions of one or several complex variables, Éditions Scientifiques Hermann, Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0154968
  • Raoul Bott and Clifford Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989), no. 1, 137–186. MR 954493, DOI https://doi.org/10.1090/S0894-0347-1989-0954493-5
  • A. Dessai. Rigidity Theorems for $Spin^c$-Manifolds and Applications, doctoral thesis, Universität Mainz (1996).
  • Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735
  • Friedrich Hirzebruch, Elliptic genera of level $N$ for complex manifolds, Differential geometrical methods in theoretical physics (Como, 1987) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 250, Kluwer Acad. Publ., Dordrecht, 1988, pp. 37–63. MR 981372
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and modular forms, Aspects of Mathematics, E20, Friedr. Vieweg & Sohn, Braunschweig, 1992. With appendices by Nils-Peter Skoruppa and by Paul Baum. MR 1189136
  • P.S. Landweber. Elliptic Genera: an Introductory Overview, in P.S. Landweber (Ed.). Elliptic Curves and Modular Forms in Algebraic Topology, Proceedings Princeton 1986, Lecture Notes in Mathematics, 1326, Springer (1988), pp. 1-10.
  • P. S. Landweber (ed.), Elliptic curves and modular forms in algebraic topology, Lecture Notes in Mathematics, vol. 1326, Springer-Verlag, Berlin, 1988. MR 970278
  • Peter S. Landweber and Robert E. Stong, Circle actions on Spin manifolds and characteristic numbers, Topology 27 (1988), no. 2, 145–161. MR 948178, DOI https://doi.org/10.1016/0040-9383%2888%2990034-1
  • K. Liu, On Elliptic Genera, Theta-Functions and Elliptic Modular Surfaces, preprint (1992).
  • Kefeng Liu, On modular invariance and rigidity theorems, J. Differential Geom. 41 (1995), no. 2, 343–396. MR 1331972
  • S. Ochanine. Genres Elliptiques Équivariants, in P.S. Landweber (Ed.). Elliptic Curves and Modular Forms in Algebraic Topology, Proceedings Princeton 1986, Lecture Notes in Mathematics, 1326, Springer (1988), pp. 107-122.
  • Serge Ochanine, Sur les genres multiplicatifs définis par des intégrales elliptiques, Topology 26 (1987), no. 2, 143–151 (French). MR 895567, DOI https://doi.org/10.1016/0040-9383%2887%2990055-3
  • Reinhold Remmert, Theory of complex functions, Graduate Texts in Mathematics, vol. 122, Springer-Verlag, New York, 1991. Translated from the second German edition by Robert B. Burckel; Readings in Mathematics. MR 1084167
  • Clifford Henry Taubes, $S^1$ actions and elliptic genera, Comm. Math. Phys. 122 (1989), no. 3, 455–526. MR 998662
  • E. Witten. The Index of the Dirac Operator in Loop Space, in P.S. Landweber (Ed.). Elliptic Curves and Modular Forms in Algebraic Topology, Proceedings Princeton 1986, Lecture Notes in Mathematics, 1326, Springer (1988), pp 161-181.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58G10, 19L47, 11F03, 57S15, 13N10

Retrieve articles in all journals with MSC (1991): 58G10, 19L47, 11F03, 57S15, 13N10


Additional Information

Anand Dessai
Affiliation: Department of Mathematics University of Mainz 55099 Mainz Germany
Address at time of publication: Department of Mathematics University of Augsburg 86135 Augsburg Germany
MR Author ID: 630872
Email: dessai@mathpool.Uni-Augsburg.DE

Rainer Jung
Affiliation: Mathematisches Forschungsinstitut Oberwolfach Lorenzenhof 77709 Oberwolfach Germany
Email: jung@MFO.DE

Keywords: Rigidity theorem, elliptic genera, index theory, Jacobi functions
Received by editor(s): January 7, 1997
Article copyright: © Copyright 1998 American Mathematical Society