Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On asymptotic approximations of the residual currents
HTML articles powered by AMS MathViewer

by Alekos Vidras and Alain Yger PDF
Trans. Amer. Math. Soc. 350 (1998), 4105-4125 Request permission

Abstract:

We use a $\mathcal {D}$-module approach to discuss positive examples for the existence of the unrestricted limit of the integrals involved in the approximation to the Coleff-Herrera residual currents in the complete intersection case. Our results also provide asymptotic developments for these integrals.
References
  • D. Barlet and H.-M. Maire, Développements asymptotiques, transformation de Mellin complexe et intégration sur les fibres, Séminaire d’Analyse P. Lelong–P. Dolbeault–H. Skoda, Années 1985/1986, Lecture Notes in Math., vol. 1295, Springer, Berlin, 1987, pp. 11–23 (French). MR 1047719, DOI 10.1007/BFb0081975
  • D. Barlet and H.-M. Maire, Asymptotic expansion of complex integrals via Mellin transform, J. Funct. Anal. 83 (1989), no. 2, 233–257. MR 995749, DOI 10.1016/0022-1236(89)90020-7
  • D. Barlet and H.-M. Maire, Asymptotique des intégrales-fibres, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 5, 1267–1299 (French, with English and French summaries). MR 1275199
  • Carlos A. Berenstein, Roger Gay, Alekos Vidras, and Alain Yger, Residue currents and Bezout identities, Progress in Mathematics, vol. 114, Birkhäuser Verlag, Basel, 1993. MR 1249478, DOI 10.1007/978-3-0348-8560-7
  • C. A. Berenstein and A. Yger, Exponential polynomials and ${\scr D}$-modules, Compositio Math. 95 (1995), no. 2, 131–181. MR 1313872
  • Hélène Biosca, Sur l’existence de polynômes de Bernstein génériques associés à une application analytique, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 7, 659–662 (French, with English and French summaries). MR 1386471
  • H. Biosca, H. Maynadier, Modules différentiels associés à un morphisme et conormal relatif, Preprint Université de Nice, Juin 1994.
  • J.-E. Björk, Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., Amsterdam-New York, 1979. MR 549189
  • Jan-Erik Björk, Analytic ${\scr D}$-modules and applications, Mathematics and its Applications, vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1232191, DOI 10.1007/978-94-017-0717-6
  • J. E. Björk, Residue currents and $\mathcal {D}$-modules on complex manifolds, Preprint, Stockholm University, April 1996.
  • Pierre Jeanquartier, Transformation de Mellin et développements asymptotiques, Enseign. Math. (2) 25 (1979), no. 3-4, 285–308 (1980) (French). MR 570314
  • Nicolas R. Coleff and Miguel E. Herrera, Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, vol. 633, Springer, Berlin, 1978 (French). MR 492769
  • Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
  • Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
  • Masaki Kashiwara and Takahiro Kawai, On holonomic systems for $\Pi ^{N}_{l=1}(f_{l}+(\surd \ -1)0)^{\lambda _{l}}$, Publ. Res. Inst. Math. Sci. 15 (1979), no. 2, 551–575. MR 555665, DOI 10.2977/prims/1195188184
  • Ben Lichtin, Generalized Dirichlet series and $b$-functions, Compositio Math. 65 (1988), no. 1, 81–120. MR 930148
  • Hélène Maynadier, Équations fonctionnelles pour une intersection complète quasi-homogène à singularité isolée, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), no. 7, 655–658 (French, with English and French summaries). MR 1386470
  • Mikael Passare and August Tsikh, Defining the residue of a complete intersection, Complex analysis, harmonic analysis and applications (Bordeaux, 1995) Pitman Res. Notes Math. Ser., vol. 347, Longman, Harlow, 1996, pp. 250–267. MR 1402032
  • Mikael Passare, August Tsikh, and Oleg Zhdanov, A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 233–241. MR 1319350
  • M. Passare, A. Tsikh, A.Yger, Residue currents of the Bochner-Martinelli type, submitted.
  • C. Sabbah, Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 64 (1987), no. 2, 213–241 (French, with English summary). MR 916482
  • C. Sabbah, Appendice à proximité évanescente II, Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1988.
  • A. K. Tsikh, Multidimensional residues and their applications, Translations of Mathematical Monographs, vol. 103, American Mathematical Society, Providence, RI, 1992. Translated from the 1988 Russian original by E. J. F. Primrose. MR 1181199, DOI 10.1090/mmono/103
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 32A27, 32C30
  • Retrieve articles in all journals with MSC (1991): 32A27, 32C30
Additional Information
  • Alekos Vidras
  • Affiliation: Deparment of Mathematics and Statistics, University of Cyprus, Nicosia, Cyprus
  • Alain Yger
  • Affiliation: Department of Mathematics University of Bordeaux I Talence, France
  • Received by editor(s): November 20, 1996
  • © Copyright 1998 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 350 (1998), 4105-4125
  • MSC (1991): Primary 32A27, 32C30
  • DOI: https://doi.org/10.1090/S0002-9947-98-02332-0
  • MathSciNet review: 1608506