Atomic maps and the Chogoshvili-Pontrjagin claim
HTML articles powered by AMS MathViewer
- by M. Levin and Y. Sternfeld
- Trans. Amer. Math. Soc. 350 (1998), 4623-4632
- DOI: https://doi.org/10.1090/S0002-9947-98-01995-3
- PDF | Request permission
Abstract:
It is proved that all spaces of dimension three or more disobey the Chogoshvili-Pontrjagin claim. This is of particular interest in view of the recent proof (in Certain 2-stable embeddings, by Dobrowolski, Levin, and Rubin, Topology Appl. 80 (1997), 81–90) that two-dimensional ANRs obey the claim. The construction utilizes the properties of atomic maps which are maps whose fibers ($=$point inverses) are atoms ($=$hereditarily indecomposable continua). A construction of M. Brown is applied to prove that every finite dimensional compact space admits an atomic map with a one-dimensional range.References
- Yaki Sternfeld, Stability and dimension—a counterexample to a conjecture of Chogoshvili, Trans. Amer. Math. Soc. 340 (1993), no. 1, 243–251. MR 1145964, DOI 10.1090/S0002-9947-1993-1145964-7
- Michael Levin and Yaki Sternfeld, Mappings which are stable with respect to the property $\textrm {dim}f(X)\geq k$, Topology Appl. 52 (1993), no. 3, 241–265. MR 1243607, DOI 10.1016/0166-8641(93)90106-N
- Michael Levin and Yaki Sternfeld, Monotone basic embeddings of hereditarily indecomposable continua, Topology Appl. 68 (1996), no. 3, 241–249. MR 1377047, DOI 10.1016/0166-8641(95)00066-6
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- A.N. Dranisknikov, On Chogoshvili’s conjecture, preprint.
- M. Brown, Continuous collections of higher dimensional hereditarily indecomposable continua, Thesis, University of Wisconsin, 1958.
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- W. Lewis, The Pseudo-Arc, Marcel-Dekker, in preparation.
- T. Dobrowolski, M. Levin and L.R. Rubin, Certain $2$-stable embeddings, Top. and Appl. 80 (1997), 81–90.
- G. Chogoshvili, On a theorem in the theory of dimensionality, Compositio Math., 5(1938), 292-298.
- P. Alexandroff, Zum allgeminen Dimensions problem, Gott. nachrichten, 37(1928).
- F.D. Ancel and T. Dobrowolski, A variant of Sternfeld’s counter example to a conjecture of Chogoshvili-Pontrjagin, preprint.
- K. Sitnikov, An example of a 2-dimensional set in 3-dimensional Euclidean space allowing arbitrarily small deformation into a 1-dimensional polyhedron and a certain new characterization of dimension of sets in Euclidean spaces, Dokl. Akad. Nauk SSSR, 88(1953), 21-24.
- G. Nobeling, Die Projektioner einer kompakten $m$–dimensioalen Menge in $R_k$, Ergebnisse Math. Kolloq., 4(1933), 24-25.
- Sibe Mardešić, Compact subsets of $R^{n}$ and dimension of their projections, Proc. Amer. Math. Soc. 41 (1973), 631–633. MR 334161, DOI 10.1090/S0002-9939-1973-0334161-3
- D. O. Kiguradze, Some properties of metric dimension, Soobshch. Akad. Nauk Gruzin. SSR 132 (1988), no. 3, 485–488 (1989) (Russian, with English and Georgian summaries). MR 1020252
- Y. Sternfeld, Uniformly separating families of functions, Israel J. Math. 29 (1978), no. 1, 61–91. MR 487991, DOI 10.1007/BF02760402
- Yaki Sternfeld, Hilbert’s 13th problem and dimension, Geometric aspects of functional analysis (1987–88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 1–49. MR 1008715, DOI 10.1007/BFb0090047
- A. N. Dranišnikov, D. Repovš, and E. V. Ščepin, On intersections of compacta in Euclidean space: the metastable case, Tsukuba J. Math. 17 (1993), no. 2, 549–564. MR 1255491, DOI 10.21099/tkbjm/1496162280
- Roman Pol, A $2$-dimensional compactum in the product of two $1$-dimensional compacta which does not contain any rectangle, Topology Proc. 16 (1991), 133–135. MR 1206460
- Yaki Sternfeld, On finite-dimensional maps and other maps with “small” fibers, Fund. Math. 147 (1995), no. 2, 127–133. MR 1341726
- Michael Levin, A short construction of hereditarily infinite-dimensional compacta, Topology Appl. 65 (1995), no. 1, 97–99. MR 1354384, DOI 10.1016/0166-8641(95)00099-3
- Michael Levin and Yaki Sternfeld, The space of subcontinua of a $2$-dimensional continuum is infinite-dimensional, Proc. Amer. Math. Soc. 125 (1997), no. 9, 2771–2775. MR 1425131, DOI 10.1090/S0002-9939-97-04172-5
- Michael Levin and Yaki Sternfeld, Hyperspaces of two-dimensional continua, Fund. Math. 150 (1996), no. 1, 17–24. MR 1387954, DOI 10.4064/fm-150-1-17-24
- Michael Levin, Bing maps and finite-dimensional maps, Fund. Math. 151 (1996), no. 1, 47–52. MR 1405520
- B. Knaster, Un continu dont tout sous-continu est indecomposable, Fundamenta Math., 3(1922), 247-286.
Bibliographic Information
- M. Levin
- Affiliation: Department of Mathematics, Haifa University, Mount Carmel, Haifa 31905, Israel
- Email: levin@mathcs2.haifa.ac.il
- Y. Sternfeld
- Affiliation: Department of Mathematics, Haifa University, Mount Carmel, Haifa 31905, Israel
- Email: yaki@mathcs2.haifa.ac.il
- Received by editor(s): January 17, 1996
- Received by editor(s) in revised form: December 5, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4623-4632
- MSC (1991): Primary 54F45
- DOI: https://doi.org/10.1090/S0002-9947-98-01995-3
- MathSciNet review: 1433123