## The lifting of an exponential sum to a cyclic algebraic number field of prime degree

HTML articles powered by AMS MathViewer

- by Yangbo Ye PDF
- Trans. Amer. Math. Soc.
**350**(1998), 5003-5015 Request permission

## Abstract:

Let $E$ be a cyclic algebraic number field of prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in $E$.## References

- Henri Cohen,
*A course in computational algebraic number theory*, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR**1228206**, DOI 10.1007/978-3-662-02945-9 - H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen,
*J. Reine Angew. Math.***172**(1935), 151-182. - W. Duke and H. Iwaniec,
*A relation between cubic exponential and Kloosterman sums*, A tribute to Emil Grosswald: number theory and related analysis, Contemp. Math., vol. 143, Amer. Math. Soc., Providence, RI, 1993, pp. 255–258. MR**1210520**, DOI 10.1090/conm/143/00999 - John Greene and Dennis Stanton,
*The triplication formula for Gauss sums*, Aequationes Math.**30**(1986), no. 2-3, 134–141. MR**843655**, DOI 10.1007/BF02189920 - P. Gérardin and J.-P. Labesse,
*The solution of a base change problem for $\textrm {GL}(2)$ (following Langlands, Saito, Shintani)*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 115–133. MR**546613** - Hervé Jacquet,
*The continuous spectrum of the relative trace formula for $\textrm {GL}(3)$ over a quadratic extension*, Israel J. Math.**89**(1995), no. 1-3, 1–59. MR**1324453**, DOI 10.1007/BF02808192 - H. Jacquet and R. P. Langlands,
*Automorphic forms on $\textrm {GL}(2)$*, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR**0401654** - Hervé Jacquet and Yangbo Ye,
*Une remarque sur le changement de base quadratique*, C. R. Acad. Sci. Paris Sér. I Math.**311**(1990), no. 11, 671–676 (French, with English summary). MR**1081622** - Nicholas M. Katz,
*Gauss sums, Kloosterman sums, and monodromy groups*, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR**955052**, DOI 10.1515/9781400882120 - Daniel S. Kubert and Stephen Lichtenbaum,
*Jacobi-sum Hecke characters and Gauss-sum identities*, Compositio Math.**48**(1983), no. 1, 55–87. MR**700580** - Z. Mao and S. Rallis, A trace formula for dual pairs,
*Duke Math. J*.**87**(1997), 321–341. - J. Tate,
*Number theoretic background*, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR**546607** - Yangbo Ye,
*Kloosterman integrals and base change for $\textrm {GL}(2)$*, J. Reine Angew. Math.**400**(1989), 57–121. MR**1013725**, DOI 10.1515/crll.1989.400.57 - Yangbo Ye,
*The lifting of Kloosterman sums*, J. Number Theory**51**(1995), no. 2, 275–287. MR**1326749**, DOI 10.1006/jnth.1995.1047 - Don Zagier,
*Modular forms associated to real quadratic fields*, Invent. Math.**30**(1975), no. 1, 1–46. MR**382174**, DOI 10.1007/BF01389846

## Additional Information

**Yangbo Ye**- Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419
- MR Author ID: 261621
- Email: yey@math.uiowa.edu
- Received by editor(s): May 13, 1996
- Received by editor(s) in revised form: December 9, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**350**(1998), 5003-5015 - MSC (1991): Primary 11L05; Secondary 11F70
- DOI: https://doi.org/10.1090/S0002-9947-98-02001-7
- MathSciNet review: 1433129