Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The lifting of an exponential sum to a cyclic algebraic number field of prime degree
HTML articles powered by AMS MathViewer

by Yangbo Ye PDF
Trans. Amer. Math. Soc. 350 (1998), 5003-5015 Request permission

Abstract:

Let $E$ be a cyclic algebraic number field of prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in $E$.
References
  • Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
  • H. Davenport and H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
  • W. Duke and H. Iwaniec, A relation between cubic exponential and Kloosterman sums, A tribute to Emil Grosswald: number theory and related analysis, Contemp. Math., vol. 143, Amer. Math. Soc., Providence, RI, 1993, pp. 255–258. MR 1210520, DOI 10.1090/conm/143/00999
  • John Greene and Dennis Stanton, The triplication formula for Gauss sums, Aequationes Math. 30 (1986), no. 2-3, 134–141. MR 843655, DOI 10.1007/BF02189920
  • P. Gérardin and J.-P. Labesse, The solution of a base change problem for $\textrm {GL}(2)$ (following Langlands, Saito, Shintani), Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 115–133. MR 546613
  • Hervé Jacquet, The continuous spectrum of the relative trace formula for $\textrm {GL}(3)$ over a quadratic extension, Israel J. Math. 89 (1995), no. 1-3, 1–59. MR 1324453, DOI 10.1007/BF02808192
  • H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • Hervé Jacquet and Yangbo Ye, Une remarque sur le changement de base quadratique, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 11, 671–676 (French, with English summary). MR 1081622
  • Nicholas M. Katz, Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, vol. 116, Princeton University Press, Princeton, NJ, 1988. MR 955052, DOI 10.1515/9781400882120
  • Daniel S. Kubert and Stephen Lichtenbaum, Jacobi-sum Hecke characters and Gauss-sum identities, Compositio Math. 48 (1983), no. 1, 55–87. MR 700580
  • Z. Mao and S. Rallis, A trace formula for dual pairs, Duke Math. J. 87 (1997), 321–341.
  • J. Tate, Number theoretic background, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3–26. MR 546607
  • Yangbo Ye, Kloosterman integrals and base change for $\textrm {GL}(2)$, J. Reine Angew. Math. 400 (1989), 57–121. MR 1013725, DOI 10.1515/crll.1989.400.57
  • Yangbo Ye, The lifting of Kloosterman sums, J. Number Theory 51 (1995), no. 2, 275–287. MR 1326749, DOI 10.1006/jnth.1995.1047
  • Don Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), no. 1, 1–46. MR 382174, DOI 10.1007/BF01389846
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11L05, 11F70
  • Retrieve articles in all journals with MSC (1991): 11L05, 11F70
Additional Information
  • Yangbo Ye
  • Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419
  • MR Author ID: 261621
  • Email: yey@math.uiowa.edu
  • Received by editor(s): May 13, 1996
  • Received by editor(s) in revised form: December 9, 1996
  • © Copyright 1998 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 350 (1998), 5003-5015
  • MSC (1991): Primary 11L05; Secondary 11F70
  • DOI: https://doi.org/10.1090/S0002-9947-98-02001-7
  • MathSciNet review: 1433129