The singular limit of a vector-valued reaction-diffusion process
HTML articles powered by AMS MathViewer
- by Lia Bronsard and Barbara Stoth
- Trans. Amer. Math. Soc. 350 (1998), 4931-4953
- DOI: https://doi.org/10.1090/S0002-9947-98-02020-0
- PDF | Request permission
Abstract:
We study the asymptotic behaviour of the solution to the vector–valued reaction–diffusion equation \begin{equation*}\varepsilon {\partial _{t}}\varphi -\varepsilon \triangle \varphi + {\frac {1}{\varepsilon }} \tilde W_{,\varphi } (\varphi ) = 0 \quad \text { in } \Omega _{T}, \end{equation*} where $\varphi _{\varepsilon }=\varphi :\Omega _{T}:=(0,T)\times \Omega \longrightarrow \mathbf {R}^{2}$. We assume that the the potential $\tilde W$ depends only on the modulus of $\varphi$ and vanishes along two concentric circles. We present a priori estimates for the solution $\varphi$, and, in the spatially radially symmetric case, we show rigorously that in the singular limit as $\varepsilon \to 0$, two phases are created. The interface separating the bulk phases evolves by its mean curvature, while $\varphi$ evolves according to a harmonic map flow on the respective circles, coupled across the interfaces by a jump condition in the gradient.References
- Anca Tomescu and F. M. G. Tomescu, The Galerkin solution of the general mixed problem for the parabolic equation, Rev. Roumaine Sci. Tech. Sér. Électrotech. Énergét. 28 (1983), no. 2, 127–136. MR 738609
- M. S. Berger and L. E. Fraenkel, On the asymptotic solution of a nonlinear Dirichlet problem, J. Math. Mech. 19 (1969/1970), 553–585. MR 0252813
- Lia Bronsard and Robert V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math. 43 (1990), no. 8, 983–997. MR 1075075, DOI 10.1002/cpa.3160430804
- Lia Bronsard and Robert V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Differential Equations 90 (1991), no. 2, 211–237. MR 1101239, DOI 10.1016/0022-0396(91)90147-2
- Lia Bronsard and Fernando Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rational Mech. Anal. 124 (1993), no. 4, 355–379. MR 1240580, DOI 10.1007/BF00375607
- L. Bronsard and B. Stoth (1997), Volume Preserving Mean Curvature Flow as a Limit of a Nonlocal Ginzburg–Landau Equation, SIAM J. Math. Anal. 28, 769–807.
- Yun Mei Chen, The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 (1989), no. 1, 69–74. MR 990189, DOI 10.1007/BF01161995
- Yun Mei Chen and Michael Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), no. 1, 83–103. MR 990191, DOI 10.1007/BF01161997
- Stephan Luckhaus, Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature, European J. Appl. Math. 1 (1990), no. 2, 101–111. MR 1117346, DOI 10.1017/S0956792500000103
- Jacob Rubinstein, Peter Sternberg, and Joseph B. Keller, Reaction-diffusion processes and evolution to harmonic maps, SIAM J. Appl. Math. 49 (1989), no. 6, 1722–1733. MR 1025956, DOI 10.1137/0149104
- Peter Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal. 101 (1988), no. 3, 209–260. MR 930124, DOI 10.1007/BF00253122
- Peter Sternberg, Vector-valued local minimizers of nonconvex variational problems, Rocky Mountain J. Math. 21 (1991), no. 2, 799–807. Current directions in nonlinear partial differential equations (Provo, UT, 1987). MR 1121542, DOI 10.1216/rmjm/1181072968
- B. Stoth (1996), A Sharp Interface Limit of the Phase Field Equations: One-dimensional Axisymmetric, European J. Appl. Math. 7 (1996), 603–633.
- Barbara E. E. Stoth, Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry, J. Differential Equations 125 (1996), no. 1, 154–183. MR 1376064, DOI 10.1006/jdeq.1996.0028
Bibliographic Information
- Lia Bronsard
- Affiliation: Department of Mathematics, McMaster University, Hamilton, Ont. L8S 4K1, Canada
- Email: bronsard@math.mcmaster.ca
- Barbara Stoth
- Affiliation: IAM, Universität Bonn, 53115 Bonn, Deutschland
- Email: bstoth@iam.uni-bonn.de
- Received by editor(s): November 17, 1995
- Received by editor(s) in revised form: October 15, 1996
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 4931-4953
- MSC (1991): Primary 35B25, 35K57
- DOI: https://doi.org/10.1090/S0002-9947-98-02020-0
- MathSciNet review: 1443865