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CHARACTER SUMS ASSOCIATED
TO FINITE COXETER GROUPS

JAN DENEF AND FRANÇOIS LOESER

Abstract. The main result of this paper is a character sum identity for Cox-
eter arrangements over finite fields which is an analogue of Macdonald’s con-
jecture proved by Opdam.

0. Introduction

Throughout this paper F will denote a finite field of characteristic p different
from 2.

We first slightly reformulate Macdonald’s conjecture in a form which has a direct
analogue over F. Let G be a finite subgroup of GLn(R) generated by reflections and
let q be a positive definite quadratic form which is invariant under G. Let AG be
the associated arrangement consisting of the reflection hyperplanes. Let `1, . . . , `N
be equations for the N different reflection hyperplanes. Set ∆(x) = (

∏N
i=1 `i)

2 and
let d1, . . . , dn be the degrees of G. Macdonald’s conjecture [19] is the following
equality, ∫

Rn

∆(x)se−(
∑

i x
2
i )/2dx = (2π)n/2

n∏
i=1

Γ(dis+ 1)
Γ(s+ 1)

,

when q(x) =
∑
i x

2
i and the `i are normalized in such a way that ‖`i‖ =

√
2. If

we drop the condition that the `i are normalized, and if we replace x by
√

2x, we
obtain ∫

Rn

∆(x)se−
∑

i x
2
i dx = πn/2

(
N∏
i=1

‖`i‖2
4

)s n∏
i=1

Γ(dis+ 1)
Γ(s+ 1)

.

Hence for q an arbitrary positive definite quadratic form which is invariant under
G, we obtain∫

Rn

∆(x)se−q(x)dx = πn/2κs

(
n∏
i=1

Γ(dis+ 1)
Γ(s+ 1)

)
(discr q)−

1
2 ,(0.1)

with

κ =
N∏
i=1

q(`i)
4

,(0.2)
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where we consider `i in q(`i) as a vector in Rn, identifying Rn with its dual, by
means of the quadratic form q. Observe that√

q(`i) = Max x∈Rn

q(x)=1
`i(x) .(0.3)

Formula (0.1) can be reformulated as∫
K

∆(x)se−q(x)
√

∆(x)dx = πn/2κs+
1
2

(
n∏
i=1

Γ(di(s+ 1
2 ))

Γ(s+ 1
2 )

)
(discr q)−

1
2 ,(0.4)

where K = Rn/G. Observe that
√

∆(x)dx is a G-invariant differential form.
Over F, there is the notion of a Coxeter arrangement (1.4). It is a triple,

A = (V,G, q), where V is a finite-dimensional F-vector space, G a finite subgroup
of GL(V ) generated by reflections, and q a G-invariant nondegenerate symmetric
bilinear form on V . If p does not divide |G|, one may define the degrees of G,
d1, . . . , dn (1.5). Let `1, . . . , `N be equations for the N different reflection hyper-
planes. Put ∆(x) = (

∏N
i=1 `i)

2. Because p 6= 2, we may define an element κ of F by
(0.2). Fix a nontrivial additive character ψ : F → C. The analogue of the integral
in (0.4) will be the character sum

SG(χ) :=
∑

x∈(U/G)(F)

χ(∆(x))ψ(q(x)),

where χ : F× → C× is a multiplicative character and U denotes the complement
of the hypersurface ∆(x) = 0 in V . (We write q(x) for the quadratic form q(x, x)
associated to the bilinear form q, and use the standard notation (U/G)(F) to denote
the set of F-rational points on the quotient space U/G.) The analogue of the
Gamma function will be the Gauss sum −g(χ), where g(χ) := −∑x∈F× χ(x)ψ(x).
Our main result is the following.

Main Theorem. Let A = (V,G, q) be a Coxeter arrangement over F. Assume
that p does not divide |G|. Then κ 6= 0 and, for every multiplicative character
χ : F× → C×,

SG(χ) = (−1)nφ(discr q)g(φ)nφ(κ)χ(κ)
n∏
i=1

g((φχ)di)
g(φχ)

,

where φ denotes the unique multiplicative character of F of order 2.

Note the analogy with Macdonald’s formula (0.4), replacing
√
π = Γ(1/2) by

−g(φ). (For some more remarks on this analogy, see (4.6) below.) Our proof of the
Main Theorem depends on Macdonald’s formula (0.1) at one single point, namely
for the proof of Theorem 3.3 we need to know that, with the notation of (0.1),

Max{∆(x)
∣∣ x ∈ Rn, q(x) = 1} = κN−N

n∏
i=1

ddi

i ,(0.5)

which follows directly from (0.1), by elementary calculus. Without relying on Mac-
donald’s formula we can nevertheless prove the Main Theorem for some κ in F\{0}
which is independent of χ without the assertion that κ is given by (0.2).

In the special case where G is the symmetric group Sn, the Main Theorem has
been proved for all p 6= 2 by R. Evans [13], extending the results of G. Anderson
on Selberg sums [1]. For the history and applications of such sums, we refer to
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[11] and [12]. For recent work on character sums related to relative invariants of
prehomogeneous vector spaces, see [6].

Our proof of the Main Theorem is entirely based on the cohomological interpre-
tation of character sums, using the Grothendieck-Lefschetz trace formula (see [26]
Sommes trig. and [15]). In the present situation, the cohomology is concentrated in
middle dimension (Proposition 2.1.2) and has rank 1 (Corollary 4.3.2 and formula
(4.4.6)), so that we have only to calculate the determinant of the Frobenius action
on the cohomology, which is done by Laumon’s product formula [16] 3.2.1.1.

The plan of the paper is the following. In the first section we study Coxeter
arrangements over finite fields and their liftings to characteristic zero. In section
2 we study character sums associated to central arrangements that are invariant
under a finite group. This will allow us to evaluate SG(φ). In the next section we
review results on monodromy and critical values for Coxeter arrangements from
[10] and [7]. In the last section, using all the previous results, we prove the Main
Theorem.

Most of the present work dates from 1992. It has been presented, under some
additional hypotheses, in lectures by the first named author in Orsay (SAGA) in
November 1992 and in Amsterdam in January 1993.

1. Liftable Coxeter arrangements over F

1.1. Let V be a finite dimensional vector space over a field. By a hyperplane
arrangement in V we mean a finite set of affine hyperplanes in V . If all the hyper-
planes contain 0, the arrangement is said to be central. We call an endomorphism
of V a reflection if it has order 2 and fixes pointwise some hyperplane.

We define a classical Coxeter arrangement as a triple A = (V,G, q), where V is a
finite dimensional vector space over R, G is a finite subgroup of GL(V ) generated
by reflections, and q is a G-invariant positive definite symmetric bilinear form on
V . We define a Coxeter arrangement over C as a triple A = (V,G, q), where V is a
finite dimensional vector space over C, G is a finite subgroup of GL(V ) generated
by reflections, and q is a G-invariant nondegenerate symmetric bilinear form on V ,
which arises by extension of scalars from a classical Coxeter arrangement. (In fact,
by the argument given at the end of the proof of Proposition 1.6, the last condition
in this definition is automatically verified.)

Similarly, when T is a subring of C with fraction field K, a Coxeter arrangement
over T will be a triple A = (M,G, q), where M is a free T -module of finite rank,
G a finite subgroup of GL(M) generated by reflections, and q a G-invariant non-
degenerate symmetric bilinear form on M , which induces by extension of scalars a
Coxeter arrangement over C.

The finite set of reflection hyperplanes in M ⊗T K defines a central hyperplane
arrangement in M ⊗T K which we denote by AG.

1.2. Let T be a discrete valuation ring with fraction field K. Let P be the maximal
ideal of T with residue field K = T/P. Let M be a free T -module of finite rank,
and set V = M ⊗T K, V = M ⊗T K. We denote the reduction map M → V by
x 7→ x. For any linear subspace W in V , we denote by W the reduction modulo P
of W which is defined by

W = {x ∣∣ x ∈W ∩M}.
Observe that dimKW = dimKW .
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Definition 1.2.1. Let A = (Hi)i∈J be a central arrangement in V . We say that
A has good reduction mod P if, for any I ⊂ J ,⋂

i∈I
Hi =

⋂
i∈I

Hi.

For A an arrangement in V consider the arrangement A consisting of the hyper-
planes H with H in A. Denote the lattices of A and A by L(A) and L(A). There
is a canonical inclusion preserving map

θ :

{
L(A) −→ L(A)
X 7→ ⋂

H∈A
H⊃X

H.

Proposition 1.2.2. If A has good reduction mod P, then θ is an isomorphism of
lattices.

Proof. This is straightforward because θ(X) = X when A has good reduction. Also
the equality dimKW = dimKW holds for any linear subspace W of V .

1.3. We assume the notation of (1.2). Suppose that T ⊂ C and let (M,G, q)
be a Coxeter arrangement over T . Thus, in particular, G ⊂ GL(M). Let AG be
the central arrangement in V consisting of all the reflection hyperplanes of G. We
denote the image of G in GL(V ) by G and we choose linear forms `i over T which
define the hyperplanes of AG and which are not zero modulo P. Let κ be as in
(0.2).

Proposition 1.3.1. Assume that P does not contain |G|. Then AG has good re-
duction mod P. Furthermore the canonical morphism G → G is an isomorphism,
and G acts freely on the complement in V of the hyperplanes in AG.

Proof. For the first statement it suffices to show that for all I ⊂ J

dim
⋂
i∈I

Hi ≤ dim
⋂
i∈I

Hi.

We may suppose that the Hi’s with i in I are linearly independent. Let si be the
reflection with respect to Hi and set γ =

∏
i∈I si, Fix(γ) = {x ∈ V ∣∣ γ(x) = x} and

Fix(γ) = {x ∈ V ∣∣ γ(x) = x}. From the proof of Theorem 6.27 (2) on p.225 of [22]
we see that Fix(γ) =

⋂
i∈I Hi. Since Hi ⊂ Fix(si), dim

⋂
i∈I Hi ≤ dim Fix(γ). But

this last dimension is equal to the number of eigenvalues of γ which are equal to
1, i.e., the number of eigenvalues of γ which are congruent to 1 mod P (counting
multiplicities and enlarging T so that it contains all eigenvalues of γ). But if λ is
an eigenvalue of γ which is congruent to 1 mod P, then λ = 1, because λ|G| = 1,
and P does not divide |G|. But the number of eigenvalues of γ which are equal to 1
(counting multiplicities) is equal to dim Fix(γ). We now deduce the first statement
from the equalities

dim Fix(γ) = dim
⋂
i∈I

Hi = dim
⋂
i∈I

Hi.

For the second statement we just have to observe that if an element γ of G is in
the kernel of the morphism G → G, all the eigenvalues of γ are congruent to 1
mod P, hence are equal to 1 by the above argument. The order of γ being finite,
we conclude that γ is equal to 1. Finally the third assertion follows from the well
known fact (cf. [4] Ch.V, §3 Proposition 3) that G acts freely on the complement
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in V of the hyperplanes in AG, and from the observation that Fix(α) = Fix(α), for
all α in G.

For each reflection s ∈ G we choose an eigenvector αs ∈M of s which is orthog-
onal (with respect to q) to the reflection hyperplane of s.

Set Φ = {αs | s reflection inG}. Note that

s(x) = x− 2
q(x, αs)
q(αs, αs)

αs for allx ∈ V.(1)

If q(α, α) 6∈ P for each α ∈ Φ, then,

s(x) = x− 2
q(x, αs)
q(αs, αs)

αs for allx ∈ V .(2)

Denote by q the symmetric bilinear form induced by q on V .

Lemma 1.3.2. Assume that G is essential (meaning that V G = {0}), that P does
not contain |G|, and that q(α, α) 6∈ P for all α ∈ Φ. Then the bilinear form q is
nondegenerate.

Proof. Assume that there exists x ∈ V with q(x, y) = 0 for all y ∈ V . Then
(2) implies that s(x) = x for every reflection s in G. Let Hs be the reflection
hyperplane of the reflection s. Then x ∈ Hs because otherwise s is the identity
and all eigenvalues of s would be congruent to 1 mod P. Hence x ∈ ⋂H∈AG

H =⋂
H∈AG

H = V G = 0 by Proposition 1.3.1.

Proposition 1.3.3. Assume that P does not contain |G| and that the bilinear form
q is nondegenerate. Then κ ∈ T \ P, and, for any I ⊂ J , the restriction of q to⋂
i∈I Hi is nondegenerate.

Proof. Observe first that the characteristic ofK is not 2 because 2 | |G|. For each re-
flection s ∈ G, choose an eigenvector αs ∈M of s which is orthogonal (with respect
to q) to the reflection hyperplane of s such that αs 6= 0. Since q is nondegenerate
there exists x ∈ M such that q(x, αs) 6= 0. Thus q(x, αs) 6≡ 0 mod P. Because
s(x) ∈M , formula (1) yields q(αs, αs) 6≡ 0 modP. This implies that κ ∈ T \P. Set
U =

⋂
i∈I Hi, thus U =

⋂
i∈I Hi. We have to show that the restriction of q to U is

nondegenerate. Because q is nondegenerate, it suffices to prove that the restriction
to (U)⊥ is nondegenerate. We have (U⊥) = (U)⊥ because, clearly, (U⊥) ⊂ (U)⊥

and both have the same dimension n − dimU . Thus it remains to prove that q is
nondegenerate on (U⊥). Let W be the subgroup of G which is generated by the
reflections with respect to the reflection hyperplanes of G which contain U . Clearly,
W is a finite Coxeter group in U⊥ and W ⊂ GL(U⊥∩M). It is easy to see that the
hypothesis of Lemma 1.3.2 is satisfied if we replace V by U⊥, M by U⊥ ∩M and
q by its restriction to U⊥ ∩M . Indeed (U⊥)W = {0} because VW is contained in
U , and thus (U⊥)W ⊂ U⊥ ∩ U = {0} since q|U arises from a positive definite form
over R. Hence Lemma 1.3.2 shows that (q|U⊥∩M ) is nondegenerate. Thus q|(U⊥) is
also nondegenerate.

1.4. A Coxeter arrangement over F is a triple A = (V,G, q), where V is a finite
dimensional F-vector space, G a finite subgroup of GL(V ) generated by reflections,
and q a G-invariant nondegenerate symmetric bilinear form on V . By a reflection
we mean an endomorphism of V of order 2, which fixes pointwise some hyperplane.
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The finite set of reflection hyperplanes defines a central hyperplane arrangement
which we denote by AG. A Coxeter arrangement A = (V,G, q) over F will be
called liftable if there exists an embedding T ↪→ C of a discrete valuation ring
T with residue field F and fraction field of finite degree over Q, and a Coxeter
arrangement AT = (MT , GT , qT ) over T such that V is isomorphic to MT ⊗T F
and, after identification of MT ⊗T F with V , G = GT and q = qT . Here we
denote the symmetric bilinear form induced by qT on V by qT . Such a Coxeter
arrangement AT will be called a lifting of A over T .

The following statement is a direct consequence of Proposition 1.3.1.

Corollary 1.4. Let T be a discrete valuation ring with residue field F and fraction
field of finite degree over Q. Fix an embedding T ↪→ C. Let A = (M,G, q) be a
Coxeter arrangement over T . Suppose that p does not divide |G| and that q, the
symmetric bilinear form induced by q on V , is nondegenerate. Then A := (V ,G, q)
is a liftable Coxeter arrangement over F. Furthermore the arrangement AG has
good reduction and we have AG = AG.

1.5. Let A = (V,G, q) be a Coxeter arrangement over F. Let us denote by S(V )
the symmetric algebra of V and by R(V ) the subalgebra of G-invariants. If p
does not divide |G|, by Chevalley’s Theorem ([4] Ch.V, §5 Théorème 4), R(V ) is
generated as an F-algebra by n := dimV algebraically independent homogeneous
polynomials (together with 1). The degrees of these polynomials are called the
degrees d1, . . . , dn of A (or the degrees of G). Their product being equal to |G|,
they are also prime to p (loc. cit. p.115).

Proposition 1.5. Let A = (V,G, q) be a liftable Coxeter arrangement over F.
Assume that p does not divide |G|. The degrees of A coincide with those of any
lifting of A viewed as a complex Coxeter arrangement.

Proof. Let T ⊂ C be a discrete valuation ring having F as residue field and let AT
be a lifting of A over T . We have to prove that the degrees of A and AT (viewed
as a complex Coxeter arrangement) are the same. For that we may clearly suppose
that T is complete. Let p1, . . . , pn be homogeneous generators of R(V ). As p does
not divide |G|, p1, . . . , pn can clearly be lifted, by averaging, to elements q1, . . . , qn
of R(MT ), the subalgebra of G-invariants of the symmetric algebra of MT . Let π
be a uniformizing parameter of T . The polynomials q1, . . . , qn generate the algebra
R(MT ) modulo π, hence, by induction, modulo πi for any i. Passing to the limit,
we see that q1, . . . , qn generate the algebra R(MT ), which implies the result.

1.6. By the following proposition, we have liftability of Coxeter arrangements over
finite fields, as soon as the characteristic does not divide the order of the Coxeter
group.

Proposition 1.6. Let A = (V,G, q) be a Coxeter arrangement over F. If p does
not divide |G|, then A is liftable.

Proof. Since the group ring F[G] is semisimple, each simple component of the F[G]-
module V is a direct summand of F[G]. Thus V is a projective F[G]-module, and
can hence be lifted to an T [G]-module M , of finite rank over T , for some discrete
valuation ring T ⊂ C, with residue field F and fraction field K of finite degree over
Q. In fact, by [25] §14.4 Proposition 42, we can lift V to an R[G]-module M , of
finite rank over R, for some complete discrete valuation ring R ⊂ C, with residue
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field F, and it follows from a result of M. Greenberg [14] that we can work with a
henselian discrete valuation ring instead of a complete one as in loc. cit. [As was
suggested by the referee one could also observe that the group algebra Z[ 1

|G| ][G]
is an Azumaya algebra over its center which is unramified over Z[ 1

|G| ], and take T
to split them (cf. [20] Ch.IV §1).] Since the reduction modulo p is injective on
the roots of unity of order dividing |G|, we see that the reflections in G ⊂ GL(V )
can be lifted to reflections in GL(M). By averaging, the form q can be lifted to a
G-invariant nondegenerate symmetric bilinear form qT on M . Moreover, the action
of G on M ⊗T C can be realized over R (see, e.g., [25] §13.2 Théorème 31) in
such a way that qT corresponds to a positive definite symmetric bilinear form over
R (indeed, this follows from the proof in loc. cit.). Thus (M,G, qT ) is a Coxeter
arrangement over T .

2. Character sums associated to invariant central arrangements

2.0. The data. Let p be a prime number different from 2 and let F be a finite field
of characteristic p. We denote by F̄ a fixed algebraic closure of F. Let f =

∏
i∈I `i

be a product of (not necessarly distinct) linear forms `i on An
F. The locus of f = 0

is an arrangement A. We denote by U its complement in An
F. Let q be a quadratic

form on An
F whose restriction to any stratum of A is nondegenerate. Choose a

prime number ` 6= p. Let χ be a multiplicative character F× → Q̄×
` and let ψ be

a nontrivial additive character F → Q̄×
` . (Here Q̄` denotes an algebraic closure of

the field of `-adic numbers.) We denote by Lχ and Lψ the corresponding Kummer
and Artin-Schreier sheaves (see [26] Sommes trig.). Let G be a finite group, leaving
f and q invariant, and acting freely on U . We consider the exponential sum

SG(χ) =
∑

x∈(U/G)(F)

χ(f(x))ψ(q(x))

= Tr(F, (H ·
c(UF̄, f

∗Lχ ⊗ q∗Lψ))G).

Here F denotes the geometric Frobenius automorphism and the second equality
follows from Grothendieck’s trace formula, see loc. cit.

At this point we should perhaps recall how the action of G on the cohomology
groups H ·

c(UF̄, f
∗Lχ⊗q∗Lψ) is defined. It is induced by the canonical isomorphism

H ·
c(UF̄, f

∗Lχ ⊗ q∗Lψ) ' H ·
c((U/G)F̄, π∗Q̄` ⊗ f∗GLχ ⊗ q∗GLψ)

where π : U → U/G is the natural map, fG and qG : U/G → A1 are induced by
f and q, with the natural action of G on π∗Q̄` and the trivial action on f∗GLχ and
q∗GLψ.

2.1. Concentration of the cohomology in the middle dimension. We con-
struct the following compactification q̃ of q. Let Γ be the closure in Pn×A1 of the
graph of q in An×A1 and let q̃ be the projection Γ ⊂ Pn×A1 → A1. Clearly q̃ is
proper. We denote by j : U → Γ the canonical open immersion. Let F = j!f

∗Lχ.

Lemma 2.1.1. Outside 0 ∈ An ⊂ Γ, the morphism q̃ is locally acyclic1 with respect
to the sheaf F and Γ is smooth over F.

1For the notion of “locally acyclic”, see [26] Th. finitude 2.12.
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Proof. We look locally at a ∈ Γ \ {0}.
Case (i): a ∈ An ⊂ Γ. We may assume that the linear forms `i which vanish at a
are xn, xn−1, . . . , xr and linear combinations of these, with r > 1. The restriction
of q to xn = xn−1 = · · · = xr = 0 is nondegenerate and a 6= 0, thus the restriction
of q is nonsingular at a. Hence xn, xn−1, . . . , xr, q − q(a) are part of a system of
local parameters for Γ at a. In the diagram

SpecF[xr , . . . , xn]

��

SpecF[xr, . . . , xn, q]oo

��

An
α=(xr ,... ,xn,q)

oo

SpecF SpecF[q]oo

the square is cartesian, the map α is smooth at a and, locally at a for the etale
topology, the sheaf F is the pull back of a sheaf on SpecF[xr, . . . , xn], thus q is
locally acyclic for F at a.
Case (ii): a /∈ An ⊂ Γ. The equation for Γ in Pn × A1 is yx2

0 = q(x1, . . . , xn),
where x0, x1, . . . , xn are projective coordinates on Pn and y is the coordinate on
A1. The map q̃ is given by (x, y) 7→ y. Let the coordinates of a be xi = αi
and y = b. Since a /∈ An, we have α0 = 0. Hence q(α1, . . . , αn) = 0. We
may assume that, e.g., α1 6= 0. We may assume also that the linear forms `i
which vanish at (α1, . . . , αn) are xn, xn−1, . . . , xr and linear combinations of these,
with r > 1. Since the restriction of q to xn = xn−1 = · · · = xr = 0 is nonde-
generate, (α1, . . . , αn) is a nonsingular projective point of the projective quadric
q(x1, . . . , xr−1, 0, . . . , 0) = 0 and r > 2. Hence (1, α2

α1
, α3
α1
, . . . ) is a nonsingular

point of the affine quadric q(1, t2, . . . , tr−1, 0, . . . , 0) = 0. Moreover, Γ is defined
in a neighbourhood of a by the affine equation yt20 = q(1, t2, . . . , tn). Here t0, t2,
. . . , tn are coordinates on An and y is the coordinate on A1. We see that t0, y− b,
tr, . . . , tn are part of a system of local parameters for Γ at a. Since Γ \ U is a
hypersurface of Γ given locally at a by an equation only involving t0, tr, . . . , tn, we
may conclude as in case (i) that q̃ is locally acyclic for F at a.

Proposition 2.1.2. Assume that the sheaves Riq|U !f
∗Lχ have tame ramification

at ∞ for all integers i. Then

H i
c(UF̄, f

∗Lχ ⊗ q∗Lψ) = 0 if i 6= n.

Proof. It is a direct consequence of Lemma 2.1.1 and of a straightforward adaptation
of [8] Proposition 3.1. Indeed part 3.1.1 of that proposition remains valid when we
replace the sheaf Q` by any constructible Q̄`-sheaf. Thus by Lemma 2.1.1 we get
H i
c(UF̄, f

∗Lχ ⊗ q∗Lψ) = Hi
c(ΓF̄,F ⊗ q̃∗Lψ) = 0 when i > n provided that the

sheaves Riq|U !f
∗Lχ have tame ramification at ∞ for all i. The case i < n follows

by Poincaré duality and the affineness of U .

2.2. The case when χ is trivial. We assume throughout this paragraph that χ
is trivial, thus

SG =
∑

x∈(U/G)(F)

ψ(q(x)).

We also consider

S =
∑

x∈U(F)

ψ(q(x)) = Tr(F,H ·
c(UF̄, q

∗Lψ)).
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We may assume that the `i’s define different hyperplanes.

Lemma 2.2.1. If A = ∅ and U = An, then

S = φ(discr q)(−g(φ))n ,

where φ denotes the unique multiplicative character of F of order 2.

Proof. Reduce q to diagonal form and use
∑

x∈A1(F) ψ(x2) = −g(φ).

Lemma 2.2.2. The following formula holds,

Hi
c(UF̄, q

∗Lψ) = 0 if i 6= n.

Proof. For U = An, this is well known (reduce q to diagonal form). The general case
is a direct consequence of Lemma 3.8.1 of [8], and of the fact that U is affine.

Lemma 2.2.3. The vector space Hn
c (An

F̄
, q∗Lψ) is one dimensional and the action

of an element σ of G on this space is given by multiplication by its determinant (as
an operator on An), det σ = ±1.

Proof. The first statement is well known. For the second statement, we may assume
σ is a reflection since the orthogonal group is generated by reflections. By Künneth,
the situation is reduced to the case where n = 1 and then it is easy.

Notation. We set

dim(U,G, q) := dim(F,H ·
c(UF̄, q

∗Lψ)G) = dim(F,Hn
c (UF̄, q

∗Lψ)G)(−1)n

,

with n = dimU , and we set νU,G = 0 if there is a σ in G with dimσ 6= 1, and
νU,G = 1 otherwise, with dimσ denoting the determinant of the action of σ on the
affine space of U . Let L(A), also denoted by L(U), be the lattice of the arrangement
A. For X ∈ L(A) we set X◦ = X \⋃Y ∈L(A)

X 6⊂Y
Y and StG(X) = {σ ∈ G ∣∣ σ(X) ⊂ X}.

We will use the above notation also when G does not act freely on U , for example
when U is replaced by X◦ and G by StG(X). From now on till the end of subsection
(2.2), we do not assume that G acts freely on U .

Theorem 2.2.4. The following formula holds,

dim(U,G, q) = (φ(discr q)g(φ)n)(−1)nνU,G

∏
X∈L(U)/G

dim(X◦, StG(X), q|X)−1.

Proof. The theorem follows directly from Lemmas 2.2.1, 2.2.2 and 2.2.3 and the
decomposition U = An \∐X̄∈L(U)/G

∐
X∈X̄ X

◦.

Notation. We denote by ch[An, X ], for X ∈ L(A), the set of all chains in the
lattice L(A) which connect An to X . By definition, such a chain is a sequence
X⊂X1⊂X2⊂ · · ·⊂Xm⊂An, with Xi in L(A), the inclusions being strict. Note
that StG(X) acts on ch[An, X ], so that we can consider the quotient chcl[X ] :=
ch[An, X ]/ StG(X). For c in chcl[X ] we denote by |c| the length of a chain repre-
senting c. For X in L(A), we let ReprX be the following virtual representation of
StG(X)

ReprX := (−1)n−dim X
∑

c∈chcl[X]

(−1)|c|−1 IndStG(X)
StG(c) (det|X),

where IndStG(X)
StG(c) (det|X) is the induced representation of the representation which

to an element in StG(c) assigns its determinant as an operator on X , and StG(c) is
the stabilizer of a chosen representative of c in ch[An, X ].
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Theorem 2.2.5. There is an isomorphism of virtual representations of G,

Hn
c (UF̄, q

∗Lψ) '
∑

X∈L(A)/G

IndGStG(X)(ReprX).

Moreover this isomorphism preserves the Frobenius action if we let it act by multi-
plication by (φ(discr q|X))g(φ)dimX on ReprX .

Proof. By using the same decomposition of U as in the proof of Theorem 2.2.4, we
deduce from Lemma 2.2.2 the following isomorphism of virtual representations of
G,

Hn
c (UF̄, q

∗Lψ) ' ReprAn −(−1)n
∑

X∈L(A)/G
X 6=An

IndGStG(X)(−1)dimXHdimX
c (X ◦̄

F, q
∗Lψ),

which is compatible with the Frobenius action. The theorem follows now from
Lemmas 2.2.1 and 2.2.3, by recursion and transitivity of induction.

The remaining results in this subsection (2.2) will not be used in the rest of the
paper.

Notation. For X ∈ L(A), we set d(X) := dim (ReprX)StG(X), thus

d(X) = (−1)n−dimX
∑

c∈chcl[X]
dim(StG(c)|X )⊂{1}

(−1)|c|−1,

where by dim(StG(c)|X) ⊂ {1} we mean that det(σ|X) = 1 for all σ in StG(c).

Corollary 2.2.6. The following equalities hold

det(F,Hn
c (UF̄, q

∗Lψ)G) =
∏

X∈L(A)/G

(φ(discr(q|X))g(φ)dim X)d(X)(1)

dim (Hn
c (UF̄, q

∗Lψ)G)weight k =
∑

X∈L(A)/G
dim X=k

d(X).(2)

Proposition 2.2.7. The virtual representation ReprX is in fact a representation
of StG(X), and thus, in particular, d(X) ≥ 0, for any X in L(A).

Proof. Let AX be the arrangement in An consisting of all hyperplanes of A which
contain X . Clearly StG(X) acts on AX . Let UX be the complement of AX in
An. From Theorem 2.2.5 applied to AX we deduce that ReprX is isomorphic,
as a virtual representation of StG(X), to Hn

c ((UX)F̄, q∗Lψ)weight dimX which is an
honest representation.

Corollary 2.2.8. Suppose dimHn
c (UF̄, q

∗Lψ)G = 1. Then there is exactly one X0

in L(A)/G such that d(X0) 6= 0. Moreover, d(X0) = 1 and

det(F,Hn
c (UF̄, q

∗Lψ)G) = φ(discr(q|X0))g(φ)dim X0 .

Proof. The corollary is a direct consequence of Corollary 2.2.6 (2) and Proposition
2.2.7.

We will see in (4.4) that the hypothesis of Corollary 2.2.8 is satisfied for a Coxeter
arrangement over F when p does not divide |G|.
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2.3. The case when χ = φ. We keep the same notations as in (2.1) and (2.2).

Lemma 2.3.1. Suppose that f is the square of a polynomial over F on which G
acts by multiplication by the determinant.

(1) There is a canonical isomorphism

H ·
c((U/G)F̄, f

∗
GLφ ⊗ q∗GLψ) ' H ·

c(UF̄, q
∗Lψ)dim,

where the superscript det denotes the part on which G acts by multiplication
by the determinant.

(2) For i 6= n, H i
c((U/G)F̄, f∗GLφ ⊗ q∗GLψ) = 0.

(3) The vector space Hn
c ((U/G)F̄, f∗GLφ ⊗ q∗GLψ)weight n is one dimensional, and

the Frobenius acts on it by multiplication by φ(discr q)g(φ)n.

Proof. Let us prove (1). Let G+ = {σ ∈ G ∣∣ dimσ = 1}. We may suppose G+ 6= G,
otherwise the assertion is trivial. We factor π : U → U/G into π1 : U → U/G+

and π2 : U/G+ → U/G. Note that π2 is the Kummer cover obtained by taking
the square root of f , so we have canonical isomorphisms f∗GLφ ' (π2∗Q̄`)− '
(π2∗Q̄`)det. From the canonical isomorphisms (π2∗Q̄`)det ' (π2∗(π1∗Q̄`)G

+
)det '

((π2∗π1∗Q̄`)G
+
)det ' (π∗Q̄`)det, we obtain canonical isomorphisms

H ·
c((U/G)F̄, f

∗
GLφ ⊗ q∗GLψ) ' H ·

c((U/G)F̄, (π∗Q̄`)det ⊗ q∗GLψ)

' H ·
c((U/G)F̄, (π∗Q̄`)⊗ q∗GLψ)det

' H ·
c(UF̄, q

∗
GLψ)det.

The assertion (2) is a direct consequence of (1) and Lemma 2.2.2, while (3) follows
directly from (1) and Theorem 2.2.5.

Proposition 2.3.2. Suppose that the assumptions of Lemma 2.3.1 are valid and
that Hn

c (UF̄, f
∗Lφ ⊗ q∗Lψ)G is of dimension 1. Then

SG(φ) = (−1)nφ(discr q)g(φ)n.

Proof. It is a direct consequence of the preceding lemma.

3. Monodromy and critical values for Coxeter arrangements

3.1. Let (V,G, q) be a Coxeter arrangement over C. For each reflection hyperplane
H , we choose a linear form `H : V → C defining H in V and we set δ = (

∏
H `H)2.

We denote by N the number of reflection hyperplanes and by ∆ : V/G → C the
map induced by δ. Thus ∆ is the discriminant of G. We denote by F0 the Milnor
fiber of ∆ at 0 and by Z(T,G) the zeta function of local monodromy of ∆ at 0, i.e.,

Z(T,G) =
∏
i

det(1− TM,Hi(F0,C))(−1)i+1
,

where M denotes the monodromy automorphism (see, e.g., [3]).
Let d1, . . . , dn be the degrees of G. In [10] we proved the following result.

Theorem 3.1. For G a finite Coxeter group we have∏
E connectedsubgraph

Z(−T,G(E))(−1)|E| =
n∏
i=1

1− T di

1− T
,

where the product on the left-hand side runs over all connected subgraphs E of the
Coxeter diagram of G, G(E) denotes the Coxeter group with diagram E, and |E| the
number of vertices of E.
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The proof of Theorem 3.1 given in [10] depends on a case by case analysis. A
more conceptual proof, but depending on Macdonald’s formula (0.1), is given in [7].

We use now terminology from [27] II Exp. XIII - XIV. Denote by η̄0 the generic
geometric point of the henselization of A1

C at 0 and by I0,C its inertia group (i.e., the
fundamental group of the complement of 0 in a small disk around 0). We denote by
KI0,C the Grothendieck group of finite dimensional vector spaces with I0,C-action.
If L is an object in Db

c(Gm,C,C), we denote by [Lη̄0 ] the class of
∑

(−1)i[Hi(L)η̄0 ]
in KI0,C and we set [Lη̄∞ ] = [inv∗(L)η̄0 ], where inv is the morphism x 7→ x−1. If a
finite group G acts on L, we denote by [LGη̄0 ] the class of

∑
(−1)i[Hi(L)Gη̄0 ] and we

define similarly [LGη̄∞ ]. For any character χ : I0,C → C× we denote by Vχ the class
in KI0,C of the rank one object with action given by χ and for any natural number
m ≥ 1, we set Vm = [(πm∗C)η̄0 ], where πm : Gm → Gm is given by x 7→ xm.
Of course, we have Vm =

∑
χm=1 Vχ. We set M̄G = (−1)n−1[(Rψ∆(C))0]. Here

(Rψ∆(C))0 is the stalk at zero of the complex of nearby cycles with respect to ∆.
One can rephrase Theorem 3.1 as follows.

Theorem 3.1′. For G a finite Coxeter group, the following equality in KI0,C holds,∑
E connectedsubgraph

M̄G(E) = Vφ ⊗ (
n∑
i=1

(Vdi − V1)),

where φ is the unique character of order 2.

3.2. Let U be the complement in V of δ = 0, let B (resp. B0) be the intersection
of U with the locus of q = 1 (resp. q = 0). The following proposition is proved
in [7] by a detailed analysis of the geometry of a nice compactification of U . Here
and in the following we denote by qN|U the restriction of the map defined by q on U
raised to the N -th power.

Proposition 3.2.1. We have the following equalities in KI0,C ,

(1) [(Rδ|B0!C)Gη̄∞ ] = [(Rδ|B!C)Gη̄∞ ].
(2) [(Rδ|B!C)Gη̄∞ ] + [(RqN|U !C)Gη̄0 ] = [(Rψ∆(C))0].
(3) [(Rδ|B!C)Gη̄0 ] = (−1)n

∑
E connected subgraph

G(E)6=G
M̄G(E).

(4) There exist ā, b̄ in Z with ā+b̄ = (−1)n−1 such that [(RqN|U !C)Gη̄0 ] = (ā−b̄)VN+
b̄V2N and such that [(Rq|U !δ

∗Lχ)Gη̄0 ] = āVχN + b̄VφχN , for any character χ of
I0,C, where Lχ denotes the Kummer sheaf associated to χ.

Corollary 3.2.2. The equality

[(Rδ|B!C)Gη̄0 ]− [(Rδ|B!C)Gη̄∞ ]− [(RqN|U !C)Gη̄0 ] = (−1)n(Vφ ⊗
n∑
i=1

(Vdi − V1))

holds in KI0,C .

Proof. The corollary follows directly from (2), (3) and Theorem 3.1′.

Actually, the values of ā and b̄ are determined by the following proposition, which
is proved in [7], but not needed in the present paper.

Proposition 3.2.3. The following formula holds,

[(Rq|U !C)Gη̄0 ] = (−1)n−1Vφn+N = āV1 + b̄Vφ.
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3.3. If f : X → Gm,C is a morphism of schemes of finite type over C, we set
a(f) =

∏
s∈Gm,C

sas(Rf!C), where as is the drop of the rank of Rf!(C) at s (i.e.,
the alternating sum of the drops of the rank of its cohomology sheaves, cf. [16]
3.1.5.2. We denote by ∆B the function B/G → Gm,C induced by δ. We will use
the following result which is proven in [7] as an easy consequence of Macdonald’s
formula (0.1), by which one calculates the critical value (0.5) of ∆B.

Theorem 3.3. The following formula holds,

a(∆B) =
(
κ

∏
i d
di

i

NN

)(−1)n

,

where κ is as in (0.2).

4. Proof of the Main Theorem

4.1. Determinants and monodromy. Let U be a scheme of finite type over the
finite field F. We assume that the characteristic p of F is not equal to 2 and we
fix a prime ` distinct from p. We denote by F̄ an algebraic closure of F and we set
UF̄ = U ⊗F F̄. For any object F in Db

c(U, Q̄`) (the derived category of “bounded
complexes” of Q̄`-sheaves with constructible cohomology), we denote

ε0(U/F,F) := det(−F,H ·
c(UF̄,F))−1.

Let f : U → Gm,F be a morphism. We set a(f) =
∏
s∈Gm,F̄

sas(Rf!Q̄`) ∈ F,
where as denotes the total drop at s of a complex of sheaves (cf. [16] 3.1.5.2). We
also denote by η̄0 the generic geometric point of the henselization of A1

F̄
at 0 and

by I0 (or I0,F̄) the inertia group. We denote by KI0 the Grothendieck group of
finite dimensional Q̄`-vector spaces with continuous action of I0 defined on a finite
extension of Q`. For L an object in Db

c(Gm,F, Q̄`) we define as in (3.1) objects
[Lη̄0 ] and [Lη̄∞ ] in KI0 . Also if a finite group G acts on L, we define similarly
[LGη̄0 ] and [LGη̄∞ ]. For χ : I0 → Q̄×

` a continuous character, we denote by Vχ the
associated object in KI0 . For N ≥ 1 an integer, we define VN in KI0 as in (3.1).
We will denote by φ the character of order 2 of I0. For any character χ : F× → Q̄×

`

we denote by Lχ the corresponding Kummer sheaf on Gm,F. We can also view χ

as a continuous character I0 → Q̄×
` which we still denote by χ.

Suppose [(Rf!Q̄`)η̄0 ] =
∑
N∈N× αNVN and [(Rf!Q̄`)η̄∞ ] =

∑
N∈N× βNVN with

αN and βN in Z. (Here N× denotes N \ {0}.) We define the rational number b(f)
as

b(f) :=
( ∏
N∈N×

NNαN

)( ∏
N∈N×

(−N)−NβN

)
.

For any character χ : F× → Q̄×
` we set

G(f, χ) =
∏

N∈N×

(
g(χN )αN g(χ−N )βN

)
and

G̃(f, χ) =
∏

N∈N×

(
g(χN )αN−βN

)
,

where g(χ) is the Gauss sum g(χ) := −∑x∈F× χ(x)ψ(x) for ψ a fixed nontrivial
additive character.
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Theorem 4.1.1. Assume that αN = βN = 0 when p divides N and that the sheaves
Rif!Q̄` are tame at 0 and ∞ for every i. Then, for every multiplicative character
χ of F×,

ε0(U/F, f∗Lχ) = ε0(U/F, Q̄`)χ(
a(f)
b(f)

)G(f, χ)

= ε0(U/F, Q̄`) |F|
∑

χN 6=1 βN χ(
a(f)
|b(f)| ) G̃(f, χ).

Proof. The theorem follows directly from [9] Proposition 2.4.1, which is based
on Laumon’s product formula [16] 3.2.1.1, using [16] 3.1.5.4 (iv), and g(χ−1) =
|F|χ(−1)g(χ)−1 if χ 6= 1. For more details, see [6] Proposition 3.2.1. A much
stronger result is contained in [23].

Remark. The advantage of the second equality upon the first is that |b(f)| and
G̃(f, χ) only depend on [(Rf!Q̄`)η̄0 ]− [(Rf!Q̄`)η̄∞ ].

Let F be a constructible `-adic sheaf on a scheme U (of finite type) over F and
suppose a finite group G acts on U and F . We set

εG0 (U/F,F) := det(−F,H ·
c(UF̄,F)G)−1.

Notation. For χ any multiplicative character of F× and for F in KI0,C of the form
F =

∑
N∈N× γNVN , with γN in Z, we set

G̃(F, χ) =
∏
N

g(χN )γN

and

b(F ) =
∏
N

NNγN .

It is assumed here that a nontrivial additive character has been fixed. Note that G̃
and b are multiplicative in F .

Lemma 4.1.2. (1) If N ∈ N× is even, VN⊗Vφ = VN , G̃(VN⊗Vφ, χ) = G̃(VN , χ)
and b(VN ⊗ Vφ) = b(VN ).

(2) If N ∈ N× is odd, VN ⊗ Vφ = V2N − VN , G̃(VN ⊗ Vφ, χ) = χ(4N )
g(φ) G̃(VN , φχ)

and b(VN ⊗ Vφ) = 4Nb(VN ).

Proof. Everything is clear except perhaps the second relation in (2) which follows
directly from the Hasse-Davenport formula (cf. [11]) and the first one.

4.2. Fix an integer d ≥ 1. Let R ⊂ C be a Dedekind domain containing the d-th
roots of unity, with fraction field K of finite degree over Q. We denote by K̄ = Q̄
the algebraic closure of K in C. Let A = (V,G, q) be a Coxeter arrangement over
R. For P a maximal ideal of R we denote by (V P, GP, qP) the corresponding data
over kP := R/P. When no confusion can arise, we will omit the index P. Choose
linear forms `H over R which define the hyperplanes of AG. Let P be a maximal
ideal of R which is relatively prime to d |G|, such that the linear forms `H are not
zero modulo P and such that qP is a nondegenerate bilinear form. (In particular P

is relatively prime to 2 and to each degree di of G, because |G| is even and equal to
the product of the di’s.) Thus the conclusions of Propositions 1.2.2, 1.3.1, and 1.3.3
hold. In this situation there is no ambiguity for the notations, δP, UP, BP, B0P,
etc, cf. the notation in 3.1 and 3.2, which refer to objects attached to the reduction
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of A mod P, which are also the reduction mod P of the corresponding objects
over R. We denote by I0,K̄ the inertia group at 0 of Gm,K̄ and we fix a character
χ : I0,K̄ → Q̄×

` of order d. The Kummer sheaf Lχ on Gm,K̄ is obtained by base
change from a sheaf, which we still denote by Lχ, on Gm,R. The character χ induces
a character χP : I0,k̄P

→ Q̄×
` (here k̄P denotes an algebraic closure of kP) which is

associated to a character, still denoted by the same symbol, χP : k×P → Q̄×
` . For s

an element of K we write χP(s) for the value of χP on the residue class of s if s is
a unit in RP and we set χP(s) = 1 otherwise.

Proposition 4.2.1. Let P be a maximal ideal of R satisfying the above conditions.
Then a(∆B)/b(F ) and κ are units in RP and

χP

(a(∆B)
b(F )

)
G̃(F, χP)

= CχP(κ)(−1)n ∏
1≤i≤n

[g((φχP)di)
g(φχP)

](−1)n g(χNP)āg(φχNP)b̄

g(φ)b̄

(1)

for F = [(Rδ|B!C)Gη̄0 ]− [(Rδ|B!C)Gη̄∞ ] in KI0,C (it follows from §3 and Lemma 4.1.2

that F has the required form), with C =
[
g(φ)(

∑
di odd 1)−n

](−1)n−1

. Here, as usual,
φ denotes the character of order 2.

Proof. It follows from Proposition 1.3.3 that κ is a unit in RP. By Corollary 3.2.2,

F − E = (−1)n(Vφ ⊗
n∑
i=1

(Vdi − V1))

with E = [(RqN|U !C)Gη̄0 ], and by 3.2.1 (4), E = āVN + b̄(V2N − VN ). So by Lemma
4.1.2, we obtain that b(F − E) is a unit in RP and

G̃(F − E,χP)
χP(b(F − E))

= C
∏

1≤i≤n

[g((φχP)di)
g(φχP)

](−1)n

χP

( ∏
1≤i≤n

ddi

i

)(−1)n−1

,

while b(E)N (−1)nN is a unit in RP and

G̃(E,χP)

χP

(
b(E)N (−1)nN

) =
g(χNP)āg(φχNP)b̄

g(φ)b̄
.

(To verify this last equation when N is even, one has again to use the Hasse-
Davenport formula as in the proof of 4.1.2.) Now the formula follows directly from
the multiplicativity of G̃ and b and from Theorem 3.3.

Proposition 4.2.2. For almost all P in SpecR (i.e., for all but a finite number),

εG0 (BP/kP, δ
∗
PLχP

) = εG0 (BP/kP, Q̄`)|kP|
∑

χj 6=1 βjχP(
a(∆B)
b(F )

)G̃(F, χP)(1)

and

εG0 (B0P/kP, δ
∗
PLχP

) = εG0 (B0P/kP, Q̄`)|kP|
∑

χj 6=1 βj ,(2)

where the βj are given by [(Rδ|B!C)Gη̄∞ ] =
∑

j βjVj .
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Proof. The first assertion is a direct consequence of Theorem 4.1.1, using standard
constructibility, comparison and base change theorems. For the second assertion,
note that because δ and q are homogeneous the sheaves Riδ|B0!C are lisse on Gm.
Thus |b(∆|B0/G)| = 1 (with b defined as in 4.1) and [(Rδ|B0!C)Gη̄0 ] = [(Rδ|B0!C)Gη̄∞ ].
Now the result follows similarly from Theorem 4.1.1 and Proposition 3.2.1 (1) (that
[(Rδ|B0!C)Gη̄∞ ] = [(Rδ|B!C)Gη̄∞ ]).

4.3. Good reduction. Let A = (V,G, q) be a liftable Coxeter arrangement over
F. We choose defining linear forms for each reflection hyperplane. Let d ≥ 1 be an
integer and χ : F× → Q̄×

` a character of order d. There exists a discrete valuation
ring T ⊂ C, with residue field F and fraction field of finite degree over Q, containing
the d-th roots of unity, and a lifting AT of A over T . We denote by K the fraction
field of T , by K̄ its algebraic closure in C and by Lχ the Kummer sheaf on Gm,T

associated to χ. We assume that p does not divide |G| and we choose defining linear
forms with coefficients in T for each reflection hyperplane, which reduce to those
already chosen in F. We denote by δT , UT , BT , etc, the data associated to AT .

Lemma 4.3.1. If p does not divide |G|, the specialization morphism

H i
c(B ⊗ F̄, δ∗Lχ) −→ Hi

c(BT ⊗ K̄, δ∗TLχ)

is an isomorphism for all i.

Proof. The arrangement associated to AT has good reduction by Proposition 1.3.1.
Thus the T -scheme UT admits a canonical smooth compactification ŪT over T such
that ŪT \ UT has normal crossings over T , and such that ŪT is equipped with a
morphism π : ŪT → Pn

T , where Pn
T is the projective closure of VT , extending the

inclusion of UT in VT . The compactification ŪT and the morphism π are obtained by
blowing up successively the union of the strict transforms of the strata of dimension
i of the projective arrangement associated to AT for i increasing from 0 to n−2 (cf.
[17] §7). We now define B̄T to be the strict transform in ŪT of the closure of BT
in Pn

T . It follows from Proposition 1.3.3 that B̄T intersects the strata of ŪT \ UT
transversally. Hence B̄T is smooth and proper over T and B̄T \ BT has normal
crossings over T . The assertion now follows from [26] Th. finitude Appendice 1.3.3
and 2.4.

Corollary 4.3.2. Let A = (V,G, q) be a liftable Coxeter arrangement over F. If p
does not divide |G|, then∑

(−1)i dimHi
c(B ⊗ F̄, δ∗Lχ)G = (−1)n−1.

Proof. The isomorphism in Lemma 4.3.1 being G-equivariant, we only have to prove
the analogous result for Coxeter arrangements over C. In this case∑

(−1)i dimHi
c(B, δ

∗Lχ)G =
∑

(−1)i dimHi
c(B,C)G

= |G|−1χ(B,C).

But in [7] we proved that χ(B,C) = (−1)n−1|G| for complex Coxeter arrange-
ments. (The proof is by an easy induction in a more general setting, showing that
(−1)n−1χ(B,C) equals the number of Weyl chambers.)

Lemma 4.3.3. If p does not divide |G|, the sheaves RiqT |UT !δ
∗
TLχ are lisse on

Gm,T for all i.
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Proof. The polynomials associated to δT and qT being homogeneous it is enough
to prove that the specialization morphisms associated to the specialization of the
generic point of t = 1 to the special point are isomorphims, which is precisely the
content of Lemma 4.3.1.

Corollary 4.3.4. Let A = (V,G, q) be a liftable Coxeter arrangement over F. If p
does not divide |G|, the sheaves Riq|U !δ

∗Lχ are lisse and tame on Gm,F for all i.

Proof. This is a direct consequence of Lemma 4.3.3, see, e.g., [8] (4.1).

Localizing the ring of algebraic integers in K by inverting a finite number of
elements, we obtain a Dedekind ring R ⊂ T and a Coxeter arrangement AR over
R, such that AT is obtained from AR by extension of scalars. Let P0 ∈ SpecR
be the intersection of the maximal ideal of T with R. Then P = P0 satisfies the
conditions stated at the beginning of 4.2.

Proposition 4.3.5. For P = P0 or for P any other maximal ideal of R satisfying
the conditions stated at the beginning of 4.2, the following holds:

(1) The representation of Gal(K̄ |K) on det(H ·
c(BT ⊗ K̄, δ∗Lχ)G)−1 is

unramified at P and the action of the geometric Frobenius relative to P is
given by −εG0 (BP/kP, δ

∗
PLχP

).
(2) The representation of Gal(K̄ |K) on det(H ·

c(B0T ⊗ K̄, δ∗Lχ)G)−1 is
unramified at P and the action of the geometric Frobenius relative to P
is given by εG0 (B0P/kP, δ

∗
PLχP

). Moreover the Euler characteristic of
RΓc(B0P ⊗ k̄P, δ

∗
PLχP

) is zero.

Proof. The first statement in (1) follows directly from Lemma 4.3.1 and smooth
base change. The second statement in (1) follows now from Corollary 4.3.2. For
(2), observe that by Lemma 4.3.3 and the Leray spectral sequence the analo-
gous statement holds for the Galois module det(H ·

c(UT \ B0T ⊗ K̄, δ∗Lχ)G)−1, by
the same argument as at the end of the proof of Lemma 4.3.1, using the compacti-
fication P1

T of Gm,T . So it is enough to prove the analogue statement for
det(H ·

c(UT ⊗ K̄, δ∗Lχ)G)−1, which is clear if one considers the compactification
used in the proof of Lemma 4.3.1. The assertion about the Euler characteristic
follows in the same way.

4.4. Proof of the Main Theorem. Let A = (V,G, q) be a Coxeter arrangement
over F. We assume that p does not divide |G|. Let d ≥ 1 be an integer and
χ : F× → Q̄×

` a character of order d. By Proposition 1.6, the Coxeter arrangement
A is liftable. We use the notation and material of 4.3. It follows from Proposition
1.3.3 that κ ∈ T \ P0. It is well known (see [4] Ch.V, §6 Théorème 1) that∑n
i=1(di − 1) = N . This implies that the right-hand side of 4.2.1 (1) may be

expressed in terms of a Jacobi sum Hecke character (cf. [26] Sommes trig. §6). By
Proposition 4.3.5, Proposition 4.2.2 and Cebotarev density, we deduce that relations
(1) and (2) in Proposition 4.2.2 are also valid for P0. Together with Proposition
4.2.1 this gives

εG0 (B/F, δ∗Lχ) = εG0 (B/F, Q̄`)

· |F|
∑

χj 6=1 βjCχ(κ)(−1)n ∏
1≤i≤n

[g((φχ)di)
g(φχ)

](−1)n
g(χN )āg(φχN )b̄

g(φ)b̄
(4.4.1)
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and

εG0 (B0/F, δ∗Lχ) = εG0 (B0/F, Q̄`)|F|
∑

χj 6=1 βj .(4.4.2)

Here we have implicitly used Proposition 1.5 to identify the degrees of A and AT .
By Lemma 4.3.3 the sheaves RiqT |UT !δ

∗
TLχ are lisse on Gm,T , hence we deduce

from Proposition 3.2.1 (4) that [(Rq|U !δ
∗Lχ)Gη̄0 ] = āVχN + b̄VφχN . The sheaves

(Riq|U !δ
∗Lχ)G being lisse and tame on Gm,F by Corollary 4.3.4, this implies, by

the Leray spectral sequence, the relation

εG0 (U \B0/F, δ∗Lχ ⊗ q∗Lψ) = g(χN )āg(φχN )b̄εG0 (B/F, δ∗Lχ)−1.(4.4.3)

(To verify this one uses the structure of tame irreducible lisse sheaves on Gm,F

(see, e.g., [16] p.198), or, alternatively, one can use [6] 8.1.4 and 3.1.4,(4) and [16]
3.1.5.5.) Since we have

εG0 (U/F, δ∗Lχ ⊗ q∗Lψ)

= εG0 (B0/F, δ∗Lχ) εG0 (U \B0/F, δ∗Lχ ⊗ q∗Lψ),
(4.4.4)

from equations (4.4.1) - (4.4.4), we obtain the relation

εG0 (U/F, δ∗Lχ ⊗ q∗Lψ) =
εG0 (B0/F, Q̄`)
εG0 (B/F, Q̄`)

· C−1χ(κ)(−1)n−1
g(φ)b̄

∏
1≤i≤n

[g((φχ)di)
g(φχ)

](−1)n−1

.

(4.4.5)

So,

dim(−F,H ·
c(UF̄, δ

∗Lχ ⊗ q∗Lψ)G) = A
[
χ(κ)

∏
1≤i≤n

g((φχ)di)
g(φχ)

](−1)n

,

with A independent of the character χ.
Now note that by Proposition 2.1.2 and Corollary 4.3.4,Hi

c(UF̄, δ
∗Lχ⊗q∗Lψ)G =

0 for i 6= n. On the other hand,

χ
(
RΓc(UF̄, δ

∗Lχ ⊗ q∗Lψ)G
)

= χ
(
RΓc(Gm,F̄, (Rq|U !δ

∗Lχ)G ⊗ Lψ)
)
,

because of Proposition 4.3.5 (2). Since the (Riq|U !δ
∗Lχ)G are lisse and tame on

Gm,F, we obtain

χ
(
RΓc(Gm,F̄, (Rq|U !δ

∗Lχ)G ⊗ Lψ)
)

= −
∑
i

(−1)i dimHi
c(B ⊗ F̄, δ∗Lχ)G,

see, e.g., [15] 4.8.2. By Corollary 4.3.2, we deduce that

dimHn
c (UF̄, δ

∗Lχ ⊗ q∗Lψ)G = 1.(4.4.6)

Hence we obtain by the Grothendieck trace formula,

SG(χ) = Tr(F,H ·
c(UF̄, δ

∗Lχ ⊗ q∗Lψ)G),

= A′χ(κ)
∏

1≤i≤n

g((φχ)di)
g(φχ)

,
(4.4.7)

with A′ independent of the character χ. To find the value of A′ we take χ = φ, so
A′ = SG(φ)φ(κ) and by Proposition 2.3.2 we obtain

A′ = φ(κ)(−1)nφ(discr q)g(φ)n.(4.4.8)
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The theorem now follows from (4.4.7) and (4.4.8).

4.5. Remark. A slightly different way of organizing the proof of the Main Theorem
is by using material in [2] or [18] (or the results of [24]). This material provides
an analogue of Theorem 4.1.1 for the determinant of period integrals. In this way
Macdonald’s formula (0.4), which yields the period

∫
B(R) ∆s+1/2 dx

dq , directly implies
an analogous expression for εG0 (B/F, δ∗Lχ) εG0 (B/F, Q̄`)−1, when χ is generic and
p � 0, because the last expression and the period are given by similar formulas
(compare Theorem 4.1.1 with loc. cit.). To obtain a full proof of the Main Theorem
by this approach, one has to do similar calculations as in (4.4), but now one needs
Proposition 3.2.1 (1) and Proposition 3.2.3.

4.6. Remark. That the analogy between our Main Theorem and Macdonald’s
formula (0.4) is no coincidence, can be explained partially by the following con-
jecture of Deligne ([5] §8.9): the period of a rank one motive over a number field
is completely determined by the Frobenius action. Using this conjecture one di-
rectly obtains from Macdonald’s formula an expression for εG0 (B/F, δ∗Lχ) when χ
is generic and p � 0. Note that to apply the conjecture one first has to get rid of
the additive character. (For this reduction one needs again Proposition 3.2.1 (1)
and Proposition 3.2.3.)

References

[1] G. Anderson. The evaluation of Selberg sums. C.R. Acad. Sci. Paris, 311:469–472, 1990. MR
91m:11109

[2] G. Anderson. Local factorisation of twisted DR cohomology groups. Compositio Math., 83:69–
105, 1992. MR 93k:14031

[3] V. Arnold, A. Varchenko, and S. Goussein-Zadé. Singularités des applications différentiables.
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