Degenerate principal series and local theta correspondence
HTML articles powered by AMS MathViewer
- by Soo Teck Lee and Chen-bo Zhu
- Trans. Amer. Math. Soc. 350 (1998), 5017-5046
- DOI: https://doi.org/10.1090/S0002-9947-98-02036-4
- PDF | Request permission
Abstract:
In this paper we determine the structure of the natural $\widetilde {U}(n,n)$ module $\Omega ^{p, q}(l)$ which is the Howe quotient corresponding to the determinant character $\det ^l$ of $U(p,q)$. We first give a description of the tempered distributions on $M_{p+q,n}(\mathbb {C})$ which transform according to the character $\det ^{-l}$ under the linear action of $U(p,q)$. We then show that after tensoring with a character, $\Omega ^{p, q}(l)$ can be embedded into one of the degenerate series representations of $U(n,n)$. This allows us to determine the module structure of $\Omega ^{p, q}(l)$. Moreover we show that certain irreducible constituents in the degenerate series can be identified with some of these representations $\Omega ^{p, q}(l)$ or their irreducible quotients. We also compute the Gelfand-Kirillov dimensions of the irreducible constituents of the degenerate series.References
- J. Adams, The theta correspondence over $\mathbb {R}$, preprint.
- J. L. Alperin, Diagrams for modules, J. Pure Appl. Algebra 16 (1980), no. 2, 111–119. MR 556154, DOI 10.1016/0022-4049(80)90010-9
- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187–214. MR 157250, DOI 10.1002/cpa.3160140303
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Models of representations of compact Lie groups, Funkcional. Anal. i Priložen. 9 (1975), no. 4, 61–62 (Russian). MR 0414792
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Stephen Gelbart, Examples of dual reductive pairs, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 287–296. MR 546603
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539–570. MR 986027, DOI 10.1090/S0002-9947-1989-0986027-X
- Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535–552. MR 985172, DOI 10.1090/S0894-0347-1989-0985172-6
- Roger Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 179–207. MR 789290
- R. Howe, $\theta$-series and invariant theory, Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275–285. MR 546602
- R. Howe, Oscillator representation: algebraic and analytic preliminaries, preprint.
- Roger Howe and Eng-Chye Tan, Nonabelian harmonic analysis, Universitext, Springer-Verlag, New York, 1992. Applications of $\textrm {SL}(2,\textbf {R})$. MR 1151617, DOI 10.1007/978-1-4613-9200-2
- Kenneth D. Johnson, Degenerate principal series and compact groups, Math. Ann. 287 (1990), no. 4, 703–718. MR 1066825, DOI 10.1007/BF01446924
- Kenneth D. Johnson, Degenerate principal series on tube type domains, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991) Contemp. Math., vol. 138, Amer. Math. Soc., Providence, RI, 1992, pp. 175–187. MR 1199127, DOI 10.1090/conm/138/1199127
- Stephen S. Kudla and Stephen Rallis, Degenerate principal series and invariant distributions, Israel J. Math. 69 (1990), no. 1, 25–45. MR 1046171, DOI 10.1007/BF02764727
- Stephen S. Kudla and Stephen Rallis, Ramified degenerate principal series representations for $\textrm {Sp}(n)$, Israel J. Math. 78 (1992), no. 2-3, 209–256. MR 1194967, DOI 10.1007/BF02808058
- Stephen S. Kudla, Stephen Rallis, and David Soudry, On the degree $5$ $L$-function for $\textrm {Sp}(2)$, Invent. Math. 107 (1992), no. 3, 483–541. MR 1150600, DOI 10.1007/BF01231900
- Stephen S. Kudla, Seesaw dual reductive pairs, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 244–268. MR 763017
- Stephen S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994), no. 1-3, 361–401. MR 1286835, DOI 10.1007/BF02773003
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Soo Teck Lee, On some degenerate principal series representations of $\textrm {U}(n,n)$, J. Funct. Anal. 126 (1994), no. 2, 305–366. MR 1305072, DOI 10.1006/jfan.1994.1150
- Jian-Shu Li, Singular unitary representations of classical groups, Invent. Math. 97 (1989), no. 2, 237–255. MR 1001840, DOI 10.1007/BF01389041
- Siddhartha Sahi, Unitary representations on the Shilov boundary of a symmetric tube domain, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 275–286. MR 1216195, DOI 10.1090/conm/145/1216195
- Siddhartha Sahi, Jordan algebras and degenerate principal series, J. Reine Angew. Math. 462 (1995), 1–18. MR 1329899, DOI 10.1515/crll.1995.462.1
- David A. Vogan Jr., Gel′fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75–98. MR 506503, DOI 10.1007/BF01390063
- H. Weyl, “The classical groups,” Princeton University Press, Princeton, N.J., 1946.
- André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143–211 (French). MR 165033, DOI 10.1007/BF02391012
- Gen Kai Zhang, Jordan algebras and generalized principal series representations, Math. Ann. 302 (1995), no. 4, 773–786. MR 1343649, DOI 10.1007/BF01444516
- D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
- Chen-bo Zhu, Invariant distributions of classical groups, Duke Math. J. 65 (1992), no. 1, 85–119. MR 1148986, DOI 10.1215/S0012-7094-92-06504-5
Bibliographic Information
- Soo Teck Lee
- Affiliation: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
- Email: matleest@leonis.nus.edu.sg
- Chen-bo Zhu
- Affiliation: Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
- MR Author ID: 305157
- ORCID: 0000-0003-3819-1458
- Email: matzhucb@leonis.nus.edu.sg
- Received by editor(s): May 16, 1995
- Received by editor(s) in revised form: January 27, 1997
- © Copyright 1998 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 350 (1998), 5017-5046
- MSC (1991): Primary 22E46, 11F27
- DOI: https://doi.org/10.1090/S0002-9947-98-02036-4
- MathSciNet review: 1443883